EFFECT OF PHYSIOLOGICAL CONDITIONING TECHNIQUES ON THE GERMINATION OF SOYBEAN SEEDS UNDER SALINE STRESS

Authors

DOI:

https://doi.org/10.32404/rean.v12i4.9173

Keywords:

Salicylic acid, Sodium chloride, Seed dehydration, Priming and abiotic stress

Abstract

Physiological conditioning can improve seed performance by reducing the germination and emergence period and enhancing stress tolerance. The objective was to evaluate the effect of different physiological conditioning techniques, both with and without subsequent dehydration, on the germination performance of seeds of the BRS 7482 RR soybean cultivar under conditions of salt stress. The conditioning treatments included: hydropriming, soaking in distilled water; haloconditioning, soaking in NaCl solution; hormonal priming, in salicylic acid solution and osmopriming in PEG-6000 solution. In the first experiment, seeds were conditioned in distilled water or NaCl (150, 300 mM). In the second, seeds were treated with salicylic acid (0.075, 0.15, 0.30 g L-1). In the third, seeds were exposed to PEG-6000 solutions (0, -0.4, -0.8 MPa) for 6 hours. The parameters assessed were germination and the length of the hypocotyl root axis. The physiological conditioning techniques demonstrated effects on the salinity stress tolerance of soybean BRS 7482 RR. Halopriming with 150 mM NaCl and hormonal conditioning with salicylic acid (0.15 g L-1) improved germination and seedling growth under moderate stress. Osmopriming showed potential under moderate salinity stress. However, higher NaCl concentrations and subsequent dehydration reduced seed performance. The dehydration process should be further studied to determine its effectiveness in seed conditioning.

Author Biographies

Paulo Roberto de Moura Souza Filho, Universidade Federal do Oeste da Bahia

Universidade Federal do Oeste da Bahia, câmpus Barra, Barra, Bahia, Brasil.

Vanessa Silva Romanoski, Universidade Federal do Oeste da Bahia

Universidade Federal do Oeste da Bahia, câmpus Barra, Barra, Bahia, Brasil.

Danielle Cristinne Mourão Guedes, Universidade Federal do Oeste da Bahia

Universidade Federal do Oeste da Bahia, câmpus Barra, Barra, Bahia, Brasil.

Valéria Nogueira de Souza, Universidade Federal do Oeste da Bahia

Universidade Federal do Oeste da Bahia, câmpus Barra, Barra, Bahia, Brasil.

Christiane de Fatima Martins França, Universidade Federal de São Carlos

Universidade Federal de São Carlos, Araras, São Paulo, Brasil.

Adérico Júnior Badaró Pimentel, Universidade Federal do Oeste da Bahia

Universidade Federal do Oeste da Bahia, câmpus Barra, Barra, Bahia, Brasil.

References

(I) Arif, M.A., Jan, M.T., Mian, I.A., Khan, S.A., Hollington, P., Harris, D., 2014. Evaluating the impact of osmopriming varying with polyethylene glycol concentrations and durations on soybean. International Journal of Agriculture & Biology, 16(2), 359-364.

(II) Arif, M., Jan, M.T., Marwat, K.B., M.A. Khan., 2008. Seed priming improves emergence and yield of soybean. Pakistan Journal of Botany, 40, 1169‒1177.

(III) Aydinoglu, B., Shabani, A., Safavi, S.M., 2019. Impact of priming on seed germination, seedling growth and gene expression in common vetch under salinity stress. Cellular and Molecular Biology, 65, 18–24. https://doi.org/10.14715/cmb/2019.65.3.3

(IV) Badalzadeh, A., Shahraki, A.D., 2021. Effect of hydro-priming and salinity stress on germination indices of Niger (Guizotia abyssinica Cass.). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 69, 511–518. https://doi.org/10.11118/actaun.2021.046

(V) BRASIL. Regras Para Análise de Sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. 2009. https://www.gov.br/agricultura/pt-br/assuntos/lfda/arquivos-publicacoes-laboratorio/regras-para-analise-de-sementes.pdf/view

(VI) Cai, J.F., Jiang, F., Liu, X.S., Sun, K., Wang, W., Zhang, M.X., 2021. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Science of the Total Environment, 788, 1-10. https://doi.org/10.1016/j.scitotenv.2021.147707

(VII) Camargo, M.A.M., Coronado, A.C.M., Mora, E.C., Fernández, S.Y.M., 2020. Evaluation of pregerminative treatments in Gulupa seeds (P. edulis f. edulis Sims). Revista Brasileira de Fruticultura, 42, 1–9. https://doi.org/10.1590/0100-29452020590

(VIII) Carvalho, F.J., Santana, D.G., Araújo, L.B., 2018. Why analyze germination experiments using generalized linear models? Journal of Seed Science, 40, 281–287. https://doi.org/10.1590/2317-1545v40n3185259

(IX) Carvalho, P.R., Machado, N.B., Custodio, C.C., 2007. Salicylic acid in marigold seeds (Calendula offcinalis L.) under different stresses. Revista Brasileira de Sementes, 29, 114-124, https://doi.org/https://doi.org/10.1590/S0101-31222007000100016

(X) CONAB. Companhia Nacional de Abastecimento, Acompanhamento da safra brasileira. 2023. 10, 1–102.

(XI) Pinheiro, R.A., Duarte, V.C.B., Bevilaqua, G.A.P., Antunes, I.F., 2019. Effects of homeopathic preparations on seed vigor and seedlings development of common bean. Revista de Ciências Agrárias, 42(2), 379–386. https://doi.org/10.19084/RCA.15209

(XII) Debta, H., Kunhamu, T.K., Petrík, P., Fleischer, P., Jisha, K.C., 2023. Effect of Hydropriming and Osmopriming on the Germination and Seedling Vigor of the East Indian Sandalwood (Santalum album L.). Forests, 14. https://doi.org/10.3390/f14061076

(XIII) Dekkers, B.J.W., Costa, M.C.D., Maia, J., Bentsink, L., Ligterink, W., Hilhorst, H.W.M., 2015. Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta, 241, 563–577. https://doi.org/10.1007/s00425-014-2240-x

(XIV) Ellouzi, H., Zorrig, W., Amraoui, S., Oueslati, S., Abdelly, C., Rabhi, M., Siddique, K.H.M., Hessini, K., 2023. Seed Priming with Salicylic Acid Alleviates Salt Stress Toxicity in Barley by Suppressing ROS Accumulation and Improving Antioxidant Defense Systems, Compared to Halo- and Gibberellin Priming. Antioxidants, 12, 1779. https://doi.org/10.3390/antiox12091779

(XV) El-Sanatawy, A.M., Ash-Shormillesy, S.M.A.I., Qabil, N., Awad, M.F., Mansour, E., 2021. Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water, 13. https://doi.org/10.3390/w13152115

(XVI) Gamir, J., Sánchez-Bel, P., Flors, V., 2014. Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Reports. 2014. https://doi.org/10.1007/s00299-014-1665-9

(XVII) Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Al Mahmud, J., Fujita, M., Fotopoulos, V., 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidant, 9(8), 1-52, 2020. https://doi.org/10.3390/antiox9080681

(XVIII) Heimann, T., Argueyrolles, R., Reinhardt, M., Schuenemann, F., Söder, M., Delzeit, R., 2023. Phasing out palm and soy oil biodiesel in the EU: What is the benefit? CGB Bioenergy, 16, 1-14. https://doi.org/10.1111/gcbb.13115

(XIX) Hou, G., Liu, Y., Zhang, L., Han, Y., Zhou, F., Zhang, Z., Zhang, L., 2024. Soy protein isolate emulsion microgel particles for encapsulating oil. Journal of Food Engineering, 371, 2024. https://doi.org/10.1016/j.jfoodeng.2024.111993

(XX) Ibrahim, E. A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. https://doi.org/10.1016/j.jplph.2015.12.011

(XXI) Jeller, H., Cristina, S., Perez, J.C.J.G.A., 2003. Priming in cássia-do-nordeste seeds under water, thermic and salt stress. Pesquisa Agropecuaria Brasileira, 38. https://doi.org/10.1590/S0100-204X2003000900002

(XXII) Junaid, S.A., Ali, M., Matloob, A., Tanveer-Ul-haq., Iqbal, M.M., 2023. Impact of seed priming and compost application on yield and growth attributes of cluster bean in salinity stress. Pakistan Journal of Botany, 55, 1-13. 10.30848/PJB2023-SI(2)

(XXIII) Khan, A., Anwar, Y., Hasan, M.M., Iqbal, A., Ali, M., Alharby, H.F., Hakeem, K.R., Hasanuzzaman, M., 2017. Attenuation of drought stress in Brassica seedlings with exogenous application of Ca2+ and H2O2. Plants, 6, 621–635. https://doi.org/10.3390/plants6020020

(XXIV) Kharb, V., Sharma, V., Dhaliwal, S.S., Kalia, A., 2023. Influence of iron seed priming on seed germination, growth and iron content in rice seedlings. Journal of Plant Nutrition, 46, 4054–4062. https://doi.org/10.1080/01904167.2023.2220731

(XXV) Knypl, J.S., Khan, A.A., 1981. Osmo‒conditioning of soybean seeds to improve performance at suboptimal temperatures. Agronomy Journal, 73, 112‒116. https://doi.org/10.2134/agronj1981.00021962007300010025x

(XXVI) Kumar, V.K., Rajalekshmi, R., 2021. Effect of hydro-, halo- and osmopriming on seed germination and seedling performance of Psophocarpus tetragonolobus (L.) DC. (winged bean). Journal of Crop Science and Biotechnology, 24, 411-428. https://doi.org/10.1007/s12892-021-00090-9

(XXVII) Leprince, O., Pellizzaro, A., Berriri, S., Buitink, J., 2017. Late seed maturation: Drying without dying. Journal of Experimental Botany, 1, 827–841. https://doi.org/10.1093/jxb/erw363

(XXVIII) Lewandowska, S., Łoziński, M., Marczewski, K., Kozak, M.; Schmidtke, K., 2020. Influence of priming on germination, development, and yield of soybean varieties. Agriculture, 5, 930–935. https://doi.org/10.1515/opag-2020-0092

(XXIX) Madani, A., Hassanzadehdelouei, M., Zrig, A., Ul-Allah, S., 2023. Comparison of different priming methods of pumpkin (Cucurbita pepo) seeds in the early stages of growth in saline and sodic soils under irrigation with different water qualities. Scientia Horticulturae, 320. https://doi.org/10.1016/j.scienta.2023.112165

(XXX) Matsunami, M., Hayashi, H., Murai-Hatano, M., Ishikawa-Sakurai, J., 2020. Effect of hydropriming on germination and aquaporin gene expression in rice. Plant Growth Regulation, 97(2), 263–270. https://doi.org/10.1007/s10725-021-00725-5

(XXXI) Muchlas, M., Lee, B. R., Al Mamun, M., La, V. H., Park, S. H., Bae, D. W., Kim, T.H., 2023. Mild drought priming-induced salicylic acid involves in subsequent drought tolerance by modulating glutathione redox in antagonism with abscisic acid in Brassica napus. Plant Growth Regulation. https://doi.org/10.1007/s10725-023-01070-5

(XXXII) Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., Balestrazzi, A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports, 34(8), 1281–1293. https://doi.org/10.1007/s00299-015-1784-y

(XXXIII) Adhikary, R., Mandal, V., 2019. Hydro-Priming and Hydration-Dehydration Treatment Improve Seed Invigoration and Biotic Stress Tolerance. Russian Agricultural Sciences, 45, 35–42. https://doi.org/10.3103/s1068367419010129

(XXXIV) Rehman, H., Farooq, M., Basra, S.M.A., Afzal, I., 2011. Hormonal Priming with Salicylic Acid Improves the Emergence and Early Seedling Growth in Cucumber. Journal of Agriculture & Social Sciences, 7, 109–113. http://www.fspublishers.org

(XXXV) Santos, M., Zárate-Salazar, J., Camara, T., Willadino, L., 2019. Indução de tolerância ao estresse salino em cana-de-açúcar mediante priming com ácido salicílico. Agrarian Academy, 6. https://doi.org/10.18677/agrarian_academy_2019a18

(XXXVI) Sedghi, M., Gholipouri, A., Nemati, A., Amanpour-Balaneji, B., 2010. Influence of Different Priming Materials on Germination and Seedling Establishment of Milk Thistle (Silybum marianum) under Salinity Stress. World Applied Sciences Journal, 11, 604–609.

https://www.researchgate.net/publication/228370688

(XXXVII) Shaw, N., Barak, R.S., Campbell, R.E., Kirmer, A., Pedrini, S., Dixon, K., Frischie, S., 2020. Seed use in the field: delivering seeds for restoration success. Restoration Ecology, 28(3), 276–285. https://doi.org/10.1111/rec.13210

(XXXVIII) Soares, M.M., Santos, H.C., Simões, M.G., Pazzin, D., Silva, L.J., 2015. Estresse hídrico e salino em sementes de soja classificadas em diferentes tamanhos. Pesquisa Agropecuaria Tropical, 45, 370–378. https://doi.org/10.1590/1983-40632015v4535357

(XXXIX) Sumbal, S., Ali, A., Nasser Binjawhar, D., Ullah, Z., Eldin, S. M., Iqbal, R., Sher, H., Ali, I., 2023. Comparative Effects of Hydropriming and Iron Priming on Germination and Seedling Morphophysiological Attributes of Stay-Green Wheat. Omega, 8, 23078–23088. https://doi.org/10.1021/acsomega.3c02359

(XL) Staniak, M., Szpunar-Krok, E., Kocira, A., 2023. Responses of Soybean to Selected Abiotic Stresses-Photoperiod, Temperature and Water. Agriculture, 13(1), 146. https://doi.org/10.3390/agriculture13010146

(XLI) Wang, W.Q., Wang, Y., Song, X.J., Zhang, Q., Cheng, H.Y., Liu, J., Song, S.Q., 2021. Proteomic Analysis of Desiccation Tolerance and Its Re-Establishment in Different Embryo Axis Tissues of Germinated Pea Seeds. Journal of Proteome Research, 20, 2352–2363. https://doi.org/10.1021/acs.jproteome.0c00860

(XLII) Warren, J.E., Mark, A.B., 1997. Seed Hydration Using the Drum Priming System. Seed Technology, 32, 1221–1221. doi.org/10.21273/HORTSCI.32.7.1220

(XLIII) Watson, C.A., Reckling, M., Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Lindström, K., Nemecek, T., Topp, C.F.E., Vanhatalo, A., Zander, P., Murphy-Bokern, D., Stoddard, F.L., 2017. Grain Legume Production and Use in European Agricultural Systems. Advances in Agronomy, 144, 235–303. https://doi.org/10.1016/bs.agron.2017.03.003

(XLIV) Yamur, M., Kaydan, D., 2008. Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7, 2156–2162. http://www.academicjournals.org/AJB

Downloads

Published

2025-12-10

How to Cite

de Moura Souza Filho, P. R., Silva Romanoski, V., Mourão Guedes, D. C., Nogueira de Souza, V., Martins França, C. de F., & Badaró Pimentel, A. J. (2025). EFFECT OF PHYSIOLOGICAL CONDITIONING TECHNIQUES ON THE GERMINATION OF SOYBEAN SEEDS UNDER SALINE STRESS. REVISTA DE AGRICULTURA NEOTROPICAL, 12(4). https://doi.org/10.32404/rean.v12i4.9173