GIBBERELLIC ACID (GA3) IN THE GERMINATION AND IN VITRO DEVELOPMENT OF Hylocereus polyrhizus

Authors

DOI:

https://doi.org/10.32404/rean.v13i1.9500

Keywords:

Cactaceae, Gibbelellin, Micropropagation, Dragon Fruit

Abstract

This study aims to determine the optimal dose of gibberellic acid (GA3) in modified MS medium for the in vitro germination and development of red-fleshed dragon fruit explants (Hylocereus polyrhizus). Seeds from mature, red-fleshed fruits were inoculated in modified MS medium with GA3 doses of 0.0, 0.25, 0.50, 0.75, and 1.0 mg L-1, and germination percentage was evaluated weekly. Sixty days after inoculation, explant height, longest root length, longest shoot length, and average number of roots were assessed. The 1.0 mg L-1 dose resulted in the highest germination percentage, greater cladode height, and longer shoot length. In contrast, root length and average number of roots were favored in the absence of GA3. It is concluded that GA3 application influences germination and early growth, with 1.0 mg L-1 being the most effective dose to accelerate germination and aerial growth. At the same time, the absence of the hormone promotes root development.

Author Biographies

Lucas Augusto Tarcisio da Silva, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais

Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Câmpus Barbacena, Barbacena, Minas Gerais, Brasil.

Carlos Henrique Milagres Ribeiro, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

     

Marília Maia de Souza, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais

Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Câmpus Barbacena, Barbacena, Minas Gerais, Brasil.

 

Lorena Lopes Ferreira, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais

Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Câmpus Barbacena, Barbacena, Minas Gerais, Brasil.

 

Leila Aparecida Salles Pio, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

 

References

(I) Almeida, G.M., Rodrigues, J.G.L. 2016. Desenvolvimento de plantas através da interferência de auxinas, citocininas, etileno e giberelinas. Brazilian Journal of Applied Technology for Agricultural Science, 9(3), 111-117. https://doi.org/10.5935/PAet.V9.N3.13

(II) Anagha, P., Prakasha, D., Kulapati, H., Mallikarjun, A., Vijay, M., Anand, N. 2024. Improving seed germination and seedling growth of dragon fruit (Hylocereus undatus) by PGRs. The Indian Journal of Agricultural Sciences, 94(2), 187-191. https://doi.org/10.56093/ijas.v94i2.140708

(III) Arruda, M.C., Almeida, L.O., Oliveira, L.B. 2019. Efeito da aplicação de ácido giberélico na germinação de sementes de pitaya (Hylocereus undatus). Revista Brasileira de Fruticultura, 42(2), 290-296, 2019.

(IV) Awotedu, B.F., Omolola, T.O., Akala, A.O., Awotedu, O.L., Olaoti-Laaro, S.O. 2021. Vegetative propagation: A unique technique of improving plants growth. World News of Natural Sciences, 35, 83-101.

(V) Bozkurt, T., İnan, S., Dundar, I., Kozak, S. 2022. Effect of different plant growth regulators on micropropagation of some pitaya varieties: Micropropagation of some pitaya varietie. Journal of Tropical Life Science, 12(2), 183-190. https://doi.org/10.11594/jtls.12.02.04

(VI) Cezar, A.M.A., Sorgato, J.C., Rosa, D.B.C.J., Soares, J.S., Rosa, Y.B.C. J. 2015. Aplicação foliar de ga 3 no crescimento e desenvolvimento de Passiflora edulis Sims f. flavicarpa Degener. Revista Brasileira de Fruticultura, 37, 902-912. https://doi.org/10.1590/0100-2945-233/14

(VII) Costa Júnior, D.S., Melo, D.M.A., Silva, B.K.N., Santana, M.D.F.S., Lima, A.G., Pérez-Marin, A.M. 2023. Produção e caracterização biométrica de frutos de pitaia no semiárido paraibano. RECIMA21-Revista Científica Multidisciplinar-ISSN 2675-6218, 4(9), e494037-e494037. https://doi.org/10.47820/recima21.v4i9.4037

(VIII) Ferreira, D.F. 2011. Sisvar: um sistema computacional de análise estatística. Ciência e agrotecnologia, 35, 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

(IX) Ferreira, E.A., Cavallari, L.L., Pasqual, M., Costa, F.H.S. 2007. Germinação in vitro de Pitaya vermelha. Ornamental Horticulture, 13, 1037-1040. https://doi.org/10.14295/oh.v13i0.1586

(X) Ge, N., Jia, J.S., Yang, L., Huang, R.M., Wang, Q.Y., Chen, C., Chen, J.W. 2023. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC Plant Biology, 23(1), 67. https://doi.org/10.1186/s12870-023-040843

(XI) Gonçalves, M.J., Camargo, S.S., Arruda, A.L., Rufato, L. 2020. Rápida produção de mudas de pitaia (Hylocereus undatus, Cactaceae) por meio da técnica da micropropagação. Acta Biológica Catarinense, 7(1), 75-81. https://doi.org/10.21726/abc.v7i1.162

(XII) Labouriau, L.G. 1983. Some effects of deuterium oxide on the isothermal germination of tomato seeds. Boletin de la Sociedad Venezolana de Ciencies Naturales, 38, 153-166.

(XIII) Lakehal, A., Bellini, C. 2019. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiologia plantarum, 165(1), 90-100. https://doi.org/10.1111/ppl.12823

(XIV) Murashige, T., Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

(XV) Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

(XVI) Neta, T.R., Santiago, D.B., Santos, W.M., Oliveira, J.D.S., Gallo, C.M., Lemos, E.E.P. 2022. Micropropagação e aclimatização de duas espécies de pitaya sob diferentes concentrações de reguladores de crescimento e substratos. Research, Society and Development, 11(17), e176111738756-e176111738756. http://dx.doi.org/10.33448/rsd-v11i17.38756

(XVII) Neto, M.A.D., Morais, A.A., Silva, L.J., Santos, M.C., Lopes, A.S., Nascimento, R.C., Diniz, B.L.M.T. 2024. Comprimento e aplicação de ácido indolbutírico no enraizamento de estacas de pitaya (Hylocereus guatemalensis). Contribuciones a Las Ciencias Sociales, 17(1), 6672-6683. https://doi.org/10.55905/revconv.17n.1-401

(XVIII) Quiroz-González, B., García-Mateos, R., Corrales-García, J.J. E., Colinas-León, M. T. 2018. Pitaya (Stenocereus spp.): fruta subutilizada. J. Prof. Cacto Dev, 20, 82-100. https://doi.org/10.56890/jpacd.v20i.30

(XIX) Ribeiro, C.H.M., Carlos, R.P., Bonifácio, T.C., Souza, M.M., Paz, J.I.V., Correia, T.D., Dias, M.V. 2021. Atuação do bap no enraizamento in vitro de explantes de pitaia vermelha (Hylocereus undatus). Revista Científica Rural, 23(1), 31-43. https://doi.org/10.30945/rcr-v23i1.3982

(XX) Santos, T.P., Sá, M.E., Malagutti, E.S., Pinto, M.S., Ferreira, A.F.A., Monteiro, L.N.H., Rodrigues, M.G.F. 2022. Effects of gibberellic acid concentration and fruit maturation stage on seed germination and vigor of pitahaya seedlings. Brazilian Journal of Biology, 84, e260650. https://doi.org/10.1590/1519-6984.260650

(XXI) Sarwar, R., Zhu, K.M., Jiang, T., Ding, P., Gao, Y., Tan, X.L. 2023. DELLAs directed gibberellins responses orchestrate crop development: A brief review. Crop Science, 63(1), 1-28. https://doi.org/10.1002/csc2.20825

(XXII) Shah, S. H., Islam, S., Mohammad, F., Siddiqui, M. H. 2023. Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation,42(12), 7352-7373. https://doi.org/10.1007/s00344-023-11035-7

(XXIII) Shi, B., Felipo-Benavent, A., Cerutti, G., Galvan-Ampudia, C., Jilli, L., Brunoud, G., Vernoux, T. 2024. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nature Communications, 15(1), 3895. https://doi.org/10.1038/s41467-024-48116-4

(XXIV) Silva, E.C., Leonel, L.V. 2017. Avaliação da germinação de sementes de pequizeiro (Caryocar brasiliense Camb.) submetidas em diferentes concentrações de ácido giberélico. Revista Cultura Agronômica, 26(2), 217-223. https://doi.org/10.32929/2446-8355.2017v26n2p217-223

(XXV) Silva, M.S., Klill, A. 2017. Influência do ácido giberélico na germinação de sementes de pitaia vermelha (Hylocereus polyrhizus). Revista Brasileira de Biociências, 15(3), 577-580.

(XXVI) Suárez Román, R.S., Caetano, C.M., Ramírez, H., Morales Osorio, J.G. 2014. Multiplicación de Selenicereus megalanthus (pitahaya amarilla) e Hylocereus polyrhizus (pitahaya roja) vía organogénesis somática. Acta Agronómica, 63(3), 272-281. http://dx.doi.org/10.15446/acag.v63n3.40980

(XXVII) Taiz, L., Zeiger, E., Møller, I.M., Murphy, A. 2021. Fundamentos de Fisiologia Vegetal-6. Artmed Editora.

(XXVIII) Trindade, A.R., Paiva, P., Lacerda, V., Marques, N., Neto, L., Duarte, A. 2023. Pitaya as a new alternative crop for iberian peninsula: biology and edaphoclimatic requirements. Plants, 12(18), 3212. https://doi.org/10.3390/plants12183212

Downloads

Published

2026-01-08

How to Cite

da Silva, L. A. T., Milagres Ribeiro, C. H., Maia de Souza, M., Lopes Ferreira, L., & Salles Pio, L. A. (2026). GIBBERELLIC ACID (GA3) IN THE GERMINATION AND IN VITRO DEVELOPMENT OF Hylocereus polyrhizus . REVISTA DE AGRICULTURA NEOTROPICAL, 13(1). https://doi.org/10.32404/rean.v13i1.9500