EFFECTS OF COMMERCIAL BIOFORMULATIONS ON TOMATO SEEDLINGS GROWTH PROMOTION
DOI:
https://doi.org/10.32404/rean.v13i1.9513Keywords:
Microbial inoculants, Actinomycetes, Trichoderma asperellum, Paecilomyces lilacinus, Solanum lycopersicumAbstract
Tomato (Solanum lycopersicum L.) holds global importance due to its culinary versatility and nutritional value. This study evaluated the effect of different commercial bioformulations on the growth promotion of tomato seedlings. The formulations used were based on i) Trichoderma asperellum strain CCT 2165; ii) Paecilomyces lilacinus; iii) a Microbial consortium composed of Lactobacillus spp. and actinomycetes; iv) non inoculated plants. Seedlings were grown for 25 days in polystyrene trays with 128 cells, using Carolina Soil® substrate. Inoculation was performed prior to sowing, following the furrow application dosage recommended by the manufacturers. The following parameters were evaluated: emergence speed index (ESI), emergence rate, seedling height, collar diameter, fresh and dry mass of shoot and root, total dry mass, and Dickson Quality Index (DQI). The experiment was laid out in a randomized block design (RBD), comprising 4 treatments (inoculations) and 10 replicates per treatment. P. lilacinus and the microbial consortium yielded the highest EVI values, 22.84 and 23.02 emerged plants day-1, and emergence rates of 100% and 98.75%, respectively. P. lilacinus provided the best seedling development and a DQI of 0.002. In the principal component analysis (PCA), which explained 78.64% of the total variation, the dominance of P. lilacinus across variables was evident. However, the dendrogram revealed a similarity in the effects caused by the microbial consortium and P. lilacinus. It is concluded that the use of P. lilacinus is the most recommended treatment; albeit the application of other microorganisms also improves seedling growth.
References
(I) Ahemad M. 2014. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry. Riad. v. 12, n. 7, p. 1365-1377. https://doi.org/10.1016/j.arabjc.2014.11.020
(II) Ahemad, M., Kibret, M. 2014. Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. Journal of King Saud University – Science. Riad. v. 26, n. 1, p 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
(III) Baron, N.C., Pollo, A.D.S., Rigobelo, E.C. 2020. Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ. San Diego. v. 5, n. 5, p. 1-25. https://doi.org/10.7717/peerj.9005
(IV) Barbosa, J., Oliveira, J., Barbosa, J., Martins Filho, A., Medeiros, E., Sobral, J.K. 2018. Influência de esterco bovino e microrganismo promotores de crescimento na cultura da Alface (Lactuca sativa L.), no município de Garanhuns, PE. Cadernos de Agroecologia. Porto Alegre. v.13, n.1, p.1-7. https://cadernos.aba-agroecologia.org.br/cadernos/article/view/1061/594
(V) Blanco, N.H.M., Mendonça, C.G., Graichen, F.A.S. 2022. Efficiency and delivery methods of Trichoderma harzianum on biological control against southern blight in sweet pepper. Revista Brasileira de Ciências Agrárias. Pernambuco. v. 17, n. 2, p. 2-7. https://doi.org/10.5039/agraria.v17i2a1884
(VI) Carvalho, C.N., Oliveira, S.P., Pinheiro, E.C.N.M. 2023. Avaliação de substratos para formação de mudas de tomate tipo Santa Cruz. Revista ft. Rio de Janeiro. v. 27, n. 122, p.1-18. https://doi.org/10.5281/zenodo.7919489
(VII) Dickson, A., Leaf, A.L., Hosner, J.F. 1960. Quality appraisal of white spruce and white pine seedlingstock in nurseries. Forest Chronicle. Mattawa. v.36, n.1, p.10-13. https://doi.org/10.5558/tfc36010-1
(VIII) Ferreira, E.B., Cavalcanti, P.P., Nogueira, D.A. 2023. ExpDes.pt: Experimental Designs Package. Versão 1.2.0. Available at: https://CRAN.R-project.org/package=ExpDes.pt
(IX) Freitas, A.P., Silva, A.B., Santi, A., Magalhães, M.O.L., Silva, G.B. 2019. Produção de mudas de alface em substrato sob doses de fertilizante organomineral. Enciclopédia Biosfera. Goiânia. v. 16. n. 29. p. 728-737. https://doi.org/10.18677/EnciBio_2019A58
(X) Furquim, M.G.D., Nascimento, A.R., Costa, J.V.S., Ferreira, M.E., Corcioli, G., Borges, L.C. 2023. Plataformas aéreas remotamente pilotadas como câmera RGB para o mapeamento de viveiros comerciais de tomate de mesa. Mercator. Fortaleza. v. 22, n. 1, p. 1-14. https://doi.org/10.4215/rm2023.e22001i
(XI) Giassi, V., Kiritani, C., Kupper, K.C. 2016. Bacteria as growth-promoting agents for citrus rootstocks. Microbiological Research. Jena. v. 190, n. 9, p. 46-54. https://doi.org/10.1016/j.micres.2015.12.006
(XII) Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research. Jena. v. 169, n. 1, p. 30-39. https://doi.org/10.1016/j.micres.2013.09.009
(XIII) Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R., Monte, E. 2021. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens. [s/l]. v. 10, n. 8, p. 1-18. https://doi.org/10.3390/pathogens10080991 991
(XIV) Issa, C.G.C., Pontes, N.C., Vieira, M.C. Nascimento. A.R. 2021. Desenvolvimento inicial de plantas de tomateiro em resposta a bioestimulante. Revista Ibero-Americana de Ciências Ambientais. [s/l]. v. 12, n. 9, p. 46-56. https://doi.org/10.6008/CBPC2179-6858.2021.009.0005
(XV) Kassambara, A. 2023. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Versão 1.0.7. Available at: https://CRAN.R-project.org/package=factoextra
(XVI) Khan, A.N., Muhammad, N.H., Rumana, K., Hafiza, Z.A., Mohammad, R., Rattandeep, S., Humaira, Y. 2024. Potential of Lactobacillus agilis, Lactobacillus plantarum, and Lactobacillus acidophilus to enhance wheat growth under drought and heat stress. Journal of King Saud University – Science. Riad. v. 36, n. 9, p.1-22. https://doi.org/10.1016/j.jksus.2024.103334
(XVII) Krause, M. R., Monaco, P.A.V.L., Haddade, I.R., Meneghelli, L.A.M., Souza, T.D. 2017. Aproveitamento de resíduos agrícolas na composição de substratos para produção de mudas de tomateiro. Horticultura Brasileira. Santa Teresa. v. 35, n. 2, p. 305–310. https://doi.org/10.1590/S0102-053620170224
(XVIII) Lima, S.L., Junior, B.H.M., Couto, C.A. 2017. Relações entre índice de qualidade e variáveis de crescimento em mudas de olerícolas. Convibra. Nova Xavantina, v. 83, n. 2, p.1-8. https://convibra.org/publicacao/13562/.
(XIX) Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science. New York. v. 2, n. 2, p. 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
(XX) Mona, S.A., Hashem, A., Allah, E.F.A., Algarawi, A.A., Soliman, D.W.K., Wirth, S., Egamberdieva, D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture. Beijing. v. 16., n. 8, p. 1751-1757. https://doi.org/10.1016/S2095-3119(17)61695-2
(XXI) Musa, M., Jan, F.G., Hamayun, M., Jan, G., Khan, S.A., Rehman, G., Ali, S., Lee, I.J. 2023. An endophytic fungal isolate Paecilomyces lilacinus produces bioactive secondary metabolites and promotes growth of Solanum lycopersicum under heavy metal stress. Agronomy. Indiana. v. 13, n. 1, p. 874-883. https://doi.org/10.3390/agronomy13030883
(XXII) Naamala, J., Msimbira, L.A., Subramanian, S., Smith, D.L. 2023. Lactobacillus helveticus EL2006H cell-free supernatant enhances growth variables in Zea mays (maize), Glycine max L. Merill (soybean) and Solanum tuberosum (potato) exposed to NaCl stress. Frontiers in Microbiology. Lausanne. v. 13, n. 1, p.1-1210. https://doi.org/10.3389/fmicb.2022.1075633
(XXIII) Nesha, R., Siddiqui, Z.A. 2017. Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Scientia Horticulturae. Amsterdam. v. 218, n.4, p. 258-264. https://doi.org/10.1016/j.scienta.2016.11.027
(XXIV) Rokni, N., Alizadeh, H.S., Bazgir, E., Darvishnia, M., Mirzaei, H.N. 2021. The tripartite consortium of Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum). Biological Control. Washington. v. 158, n. 7, p. 1-13. https://doi.org/10.1016/j.biocontrol.2021.104608
(XXV) Santos, C.C., Scalon, S.P.Q. 2020. Ecofisiologia e nutrição de espécies frutíferas e arbóreas. Nova Xavantina. Editora Pantanal.
(XXVI) Santos, M.F., Santos, L.E., Costa, D.L., Vieira, T.A., Lustosa, D.C. 2020. Trichoderma spp. on treatment of Handroanthus serratifolius seeds: effect on seedling germination and development. Heliyon. Cambridge. v. 6, n. 6, p. 1-8. https://doi.org/10.1016/j.heliyon.2020.e04044
(XXVII) Seymen, M., Yavuz, D., Dursun, A., Kurtar, E.S., Türkmen, Ö. 2019. Identification of drought tolerant pumpkin (Cucurbita pepo L.) genotypes associated with certain fruit characteristics, seed yield, and quality. Agricultural Water Management. Amsterdam. v. 221, n. 7, p. 150-159. https://doi.org/10.1016/j.agwat.2019.05.009
(XXVIII) Silva, R.R., Santos, A.C.M., Faria, Á.J.G., Rodrigues, L.U., Alexandrino, G.C., Nunes, B.H.N. 2018. Substratos alternativos na produção de mudas de pimentão. Journal of Bioenergy And food Science. Amapá. v. 5, n. 1, p. 12-21. https://doi.org/10.18067/jbfs.v5i1.152
(XXIX) Sousa, W.S., Souza, A.G.V., Campos, T.S., Cintra, P.H.N., Faria, L.O., Melo, O.F.P. 2020. Germinação e sanidade de sementes de trigo em função da inoculação com microrganismos eficientes. Acta Iguazu. Cascavel. v. 9, n. 3, p. 9-19. https://doi.org/10.48075/actaiguaz.v9i3.23979
(XXX) Souza, G.G., Redig, M.S.F., Brito, S.N.S., Monteiro, H.S.A., Bronze, A.B.S., Lopes, E.L.N., Vasconcelos, O.M. 2021 (a). Determinação do índice de velocidade de germinação e dos parâmetros genéticos de sementes de Bacaba em diferentes substratos na Amazônia oriental. Brazilian Journal of Development. Curitiba. v. 7, n. 3, p. 25887-25898. https://doi.org/10.34117/bjdv7n3-340
(XXXI) Souza, R.R., Moraes, M.P., Paranginski, J.A., Moreira, T.F., Bittencourt, K.C., Toebe, M. 2021 (b). Effects of Trichoderma asperellum on germination indexes and seedling parameters of lettuce cultivars. Current Microbiology. Nova York. v. 79, n. 1, p. 1-12. https://doi.org/10.1007/s00284-021-02713-4 PMID: 34902081
(XXXII) Yu, Z., Wang, Z., Zhang, Y., Wang, Y., Liu, Z. 2021. Biocontrol and growth-promoting effect of Trichoderma asperellum TaspHu1 isolate from Juglans mandshurica rhizosphere soil. Microbiological Research. Jena. v. 242, n. 1, p. 65-77. https://doi.org/10.1016/j.micres.2020.126596
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.