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ABSTRACT 

Chemical control is the most widely used method for disease management in significant crops such as soybeans 

and wheat. However, for a few years biological control has gained prominence. Thus, we evaluated the antagonism 

of bacteria Pseudomonas fluorencens, Pantoea aglomerans, and Bacillus sp. on the phytopathogens Corynespora 

cassiicola and Drechslera tritici-repentis, previously isolated from soybean and wheat leaves, respectively. The 

experiments were carried out under controlled conditions at the Phytobacteriology Laboratory of the Faculty of 

Agronomy and Veterinary Medicine (FAVM), University of Passo Fundo (UPF), Rio Grande do Sul, Brazil. The 

treatments were: T1: P. Fluorencens + pathogen; T2: P. aglomerans + pathogen; T3: Bacillus spp. + pathogen, and 

T4: pathogen (control). In each experiment (C. cassiicola and D. tritici-repentis), a completely randomized design 

with six replications was used. The data were submitted to linear regression analysis, obtaining the daily increase 

rate (slope). The final time data was submitted to the ANOVA, and the means were compared by the Tukey test (P 

< 0.05). P. fluorescens, P. agglomerans, and Bacillus sp. reduced mycelial growth by 74 and 87% of C. cassiicola 

and D. tritici-repentis, respectively. Although this study was carried out under in vitro conditions, it can serve as a 

basis for other biological control studies, especially about the management of leaf spots caused by C. cassiicola and 

D. tritici-repentis, under field conditions. 

Keywords: Pseudomonas fluorencens, Pantoea aglomerans, Bacillus sp., Mycelial growth inhibition. 

 

Controle biológico de Corynespora cassicola e Drechslera triticirepentis 

RESUMO 

O controle químico é o método mais usado no manejo de doenças em grandes culturas como soja e trigo. No 

entanto, a alguns anos o controle biológico tem ganhado destaque. Assim, avaliou-se o antagonismo das bactérias 

Pseudomonas fluorencens, Pantoea aglomerans e Bacillus sp. sobre os fitopatógenos Corynespora cassiicola e 

Drechslera tritici-repentis, isolados previamente de folhas de soja e trigo, respectivamente. O experimento foi 

realizado em condições controladas, no Laboratório de Fitobacteriologia da Faculdade de Agronomia e Medicina 

Veterinária (FAMV), Universidade de Passo Fundo (UPF), Rio Grande do Sul, Brasil. Os tratamentos foram: T1: 

P. fluorencens + patógeno; T2: P. aglomerans + patógeno; T3: Bacillus spp. + patógeno e T4: patógeno (controle). 

Em cada experimento (C. cassiicola e D. tritici-repentis) se utilizou um delineamento inteiramente casualizado, 

com seis repetições cada. Os dados foram submetidos a uma análise de regressão linear, obtendo também a taxa de 

aumento diário (slope). O tempo final foi submetido a um ANOVA, e as médias comparadas pelo teste de Tukey (P 

< 0,05). P. fluorencens, P. aglomerans e Bacillus sp. reduziram o crescimento micelial em 74 e 87 %, de C. 

cassiicola e D. tritici-repentis, respectivamente. Embora este trabalho foi realizado em condições in vitro, pode 

servir como base para outros de controle biológico, especialmente com respeito ao manejo de doenças causadas por 

C. cassiicola e D. tritici-repentis, em condições de campo. 

Palavras-chave: Pseudomonas fluorencens, Pantoea aglomerans, Bacillus sp., Inibição do crescimento micelial. 
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1. Introduction 

Soybean (Glycine max L Merrill) and wheat 

(Triticale sp., Triticum aestivum L, and Triticum durum) 

are important crops worldwide. While soybean has high 

levels of protein, lipids, isoflavones, and dietary fiber 

(Shaheen et al., 2016; Moloi et al., 2021), wheat, a 

source of carbohydrates and proteins, commonly used in 

baking and cooking, is one of the most consumed 

cereals in the world, being the basis of the diet of many 

cultures (Zhao et al., 2019). However, the cultivation of 

these prominent crops is affected by biotic factors, such 

as phytopathogenic fungi, which can decrease yield 

(Amorim et al., 2018).  

Target spot (Corynespora cassiicola Berk. & Curt. 

C.T. Wei) and tan spot (Drechslera tritici-repentis Died. 

Shoem.) are significant foliar pathogens in soybean 

(Soares and Arias, 2020) and wheat (Laribi et al., 2022), 

respectively, causing significant damage in both crops. 

Chemical control is the most used method in the 

management of these diseases, normally using 

fungicides from the carboxamide (SDHI), strobilurin 

(QoI), and triazole (DMI) groups. However, a few years 

ago low fungicide efficiency was observed, also known 

as “control failure”.  

There are reports in Brazil on the loss of insensitivity 

of C. cassiicola to benzimidazoles (carbendazim), and of 

D. tritici-repentis to strobilurins and triazoles (Avozani et 

al., 2014; Tonin et al., 2017). It is also known more 

extreme cases, as observed by Teramoto et al. (2017), 

who found isolates of C. cassiicola highly insensitive to 

the fungicide cyproconazole, demonstrating that a dose 

100 times higher is required when compared to that used 

in isolates considered sensitive to this molecule. 

Recently, this behavior has been related to several 

mutations found both in C. cassiicola (Rondon and 

Lawrence, 2019; Zhu et al., 2020) and in D. tritici-

repentis (Sautua and Carmona, 2021; Lammari et al., 

2020), which confer resistance to DMI, SDHI, and QoI 

fungicides. All this makes us think that the way of 

handling diseases such as target spot and tan spot should 

be changed. 

Using microorganisms considered biocontrollers 

may be an option in the range of possibilities for disease 

management. Traditionally, the genera Pseudomonas, 

Bacillus, and Pantoea have been considered effective in 

managing some phytopathogenic fungi in various 

regions of the world (Ludwig and Moura, 2007; Correa 

et al., 2010; Dutkiewicz et al., 2016; Vicentini et al., 

2022). Several species of these genera have 

demonstrated the ability to produce antibiotics, 

mechanisms of competition for resources with the 

pathogen, or induction of plant resistance (Dutkiewicz 

et al., 2016; Dimkić et al., 2022). Using biocontrol 

agents reduces the need to spray synthetic fungicides on 

crops, which is considered an environmentally healthier 

procedure (Dutkiewicz et al., 2016).  

In this way, the in vitro study of the interaction 

between pathogenic organisms and possible 

biocontrollers are essential to change paradigms 

regarding the potential use of microorganisms on a large 

scale. Given these assumptions, the aim was to evaluate 

whether the bacteria P. fluorencens, P. aglomerans, and 

Bacillus sp. can reduce the mycelial growth and daily 

rate of progress of the pathogens C. cassiicola and D. 

tritici-repentis. 

 

 

2. Material and Methods 

The experiment was conducted under controlled 

conditions at the Phytobacteriology Laboratory of the 

Faculty of Agronomy and Veterinary Medicine 

(FAVM), University of Passo Fundo (UPF), Rio Grande 

do Sul, Brazil.  

Monosporic isolates of Corynespora cassiicola and 

Drechslera tritici-repentis were used, isolated from 

lesions on leaf tissues of commercial soybean and wheat 

crops, respectively, belonging to the collection of the 

Laboratory of Mycology at UPF. Fungi reactivation was 

conducted in Petri dishes containing Potato Dextrose 

Agar (PDA) culture medium, incubating them for 13 

days at 25 °C and a 12 h photoperiod. The bacteria 

Pseudomonas fluorencens, Pantoea aglomerans, and 

Bacillus sp. used in the present study as possible 

biocontrollers were obtained from the collection of the 

Laboratory of Phytobacteriology of the UPF.  

Using the double-layer diffusion technique, an in 

vitro antagonism test was performed between the three 

bacteria and the two fungi. In Petri dishes containing 

PDA culture medium, an aliquot (100 mL) of a dilution 

(quantified in a spectrophotometer at a wavelength of 

550 nm) of P. fluorencens (0.488 nm), Bacillus sp. 

(0.470 nm), and P. aglomerans (0.469 nm), obtained 

from 48 h old colonies. For the control, a saline solution 

was used. Subsequently, discs (6 mm Ø) of C. 

cassiicola and D. tritici-repentis were placed in the 

center of the Petri dishes. The daily growth of each 

fungus was evaluated, where it was measured every 24 

hours, using a digital caliper, up to six days after the 

establishment of the experiment.  

According to the pathogens, the treatments were: 

T1: P. fluorencens + pathogen; T2: P. aglomerans + 

pathogen; T3: Bacillus spp. + pathogen, and T4: 

pathogen (control – saline solution). In each experiment 

(C. cassiicola and D. tritici-repentis), a completely 

randomized design with six replications (Petri dishes) 

was used. The means obtained were analyzed using 

linear regression analysis, also obtaining the daily 

increase rate (slope). The data final times were 
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submitted to the ANOVA, after which these averages 

were compared using the Tukey test (P < 0.05). 

 

 

3. Results and Discussion 

Mycelial growth of C. cassiicola in Petri dishes 

containing culture medium and saline solution was 

different compared to treatments with P. fluorescens, P. 

aglomerans, and Bacillus sp. from the second day of the 

experiment (Figures 1 and 3). This behavior was more  

pronounced at the end of the experiment, where C. 

cassiicola grew significantly more in saline solution (36 

mm), this mycelial growth being five times greater than 

that of the dishes containing the pathogen and bacteria. 

Mycelial growth of D. tritici-repentis was significantly 

higher when the pathogen was only in saline solution, 

compared to when exposed to bacteria from the second 

day of the experiment (Figures 2 and 3). The pathogen 

showed an average growth of 39 mm, 7.5 times greater 

than the dishes containing the pathogen and bacteria. 

 
Figure 1. Mycelial growth (mm) of Corynespora cassiicola in Petri dishes containing culture medium and Pseudomonas fluorencens 

(T1), Pantoea aglomerans (T2), Bacillus sp. (T3), and saline solution (T4, control), for six days. Passo Fundo, RS, Brazil. The bars 

represent the standard deviation of each treatment in the periods (in days) analyzed. Regression equations: T1: C=1.2681d + 6; R2 = 

0.92; T2: C = 2.4257d + 6; R2 = 0.91; T3: C = 3.131d + 6; R2 = 0.90; T4: C = 9.8175d + 6; R2 = 0.87. 

 

 

 
Figure 2. Mycelial growth (mm) of Drechslera tritici-repentis in Petri dishes containing culture medium and Pseudomonas 

fluorencens (T1), Pantoea agglomerans (T2), Bacillus sp. (T3), and saline solution (T4, control), for six days. Passo Fundo, RS, 

Brazil. The bars represent the standard deviation of each treatment in the periods (in days) analyzed. Regression equations: T1: 

C=1.2161d + 6; R2 = 0.96; T2: C = 2.1887d + 6; R2 = 0.86; T3: C = 0.8202d + 6; R2 = 0.88; T4: C = 9.9920d + 6; R2 = 0.91. 
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The regression analysis results were significant 

(Table 1). The mycelial growth rate of D. tritici-repentis 

and C. cassiicola was 6.4±0.6 and 6.9±0.7 mm day
-1

, 

respectively, when both pathogens were exposed only to 

saline solution. Thus, the inhibition of the area occupied 

by the pathogen mycelia was 74 and 87%, respectively, 

for C. cassiicola and D. tritici-repentis when exposed to 

biocontrol agents, P. fluorencens, P. aglomerans, and 

Bacillus sp. 

The control of phytopathogenic fungi using bacteria 

of the genus Pseudomonas (Rodriguez and Pfender, 

1997, Yang et al., 2014, Vicentini et al., 2022), Pantoea 

(Dutkiewicz et al., 2016), and Bacillus (Ferraz et al., 

2008, Bach et al., 2016) has been reported in the 

scientific literature. According to Asaturova et al. (2022), 

when using B. velezensis against D. tritici-repentis, a 

reduction in the mycelial growth of pathogens of up to 

94.3% was observed at 15 days in in vitro tests.  

Inhibition of pathogens occurs at the cellular level, 

for instance, D. tritici-repentis mycelium phytopathogen 

associated with Bacillus would show shortening of cells, 

plasmolysis of conidia, changes in germ tubes, 

vacuolation of hyphae, and formation of compounds in 

hyphae or the culture medium. This shortening of the 

suppressive effects of Bacillus concerning a wide list of 

phytopathogens can occur due to the effect of secondary 

metabolites of various chemical natures that these 

bacteria produce and promote protection through an 

antagonistic effect. The interaction of these bacteria 

with the plant promotes the release of lipopeptides in 

the physiology of plants, which play an essential role in 

inducing plant immunity, promoting protection by 

induced resistance (Larran et al., 2016, Asaturova et al., 

2022).  

Some species of the genus Bacillus also have the 

ability to inhibit the growth of pathogens and control of 

diseases, which would make it easier the availability of 

nutrients and/or the release of growth hormones in 

plants (Bach et al., 2016). These properties arouse 

interest in the use of biocontrol agents as well as the 

formulation of biofungicides For example, according to 

Fernandes et al. (2021), in the United States, the use of 

Bacillus in commercial biofungicides began in 1983 for 

the treatment of peanut seeds. 

 
Figure 3. Mycelial growth of Corynespora cassiicola (A-D) and Drechslera tritici-repentis (E-H) in Petri dishes containing culture 

medium and Pseudomonas fluorencens (A-E), Pantoea aglomerans (B-F), Bacillus sp. (C-G) and saline solution – control (D-H), at 

six days after the establishment of the experiments. Passo Fundo, RS, Brazil. 

 

 

Table 1. Mycelial growth rate of Corynespora cassiicola and Drechslera tritici-repentis in Petri dishes containing culture medium, 

and Pseudomonas fluorencens, Pantoea aglomerans, Bacillus sp., and saline solution for six days. Passo Fundo, RS, Brazil. 

Treatments Corynespora cassiicola Drechslera tritici-repentis 

Rate (slope) P-value Rate (slope) P-value 

Pseudomonas fluorencens 1.83 ± 0.58 b 0.0339 0.65 ± 0.10 b 0.0002 

Pantoea aglomerans 1.59 ± 0.12 b 0.0002 1.50 ± 0.20 b 0.0019 

Bacillus sp. 2.10 ± 0.21 b 0.0006 0.40 ± 0.10 b 0.0063 

Saline solution 6.90 ± 0.70 a 0.0005 6.40 ± 0.60 a 0.0006 

Means followed by the same letter in the column do not differ according to the Tukey test (P < 0.05). 
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In the study of Vasebi et al. (2015), they 

demonstrated that P. agglomerans inhibited 90% of the 

mycelial growth of Macrophomia phaseolina, a fungus 

that causes damage in soybean crops and other plant 

species. P. aglomerans has an inhibitory effect on the 

growth of numerous plant and animal pathogens, in 

addition to presenting other benefits for plant species 

i.e.  promoting growth, assisting in obtaining nutrients, 

and promoting the induction of resistance to diseases 

and pests by activating metabolic pathways of plant 

physiology (Dutkiewicz et al., 2016). These 

characteristics are also present by some species of the 

genus Bacillus (Bach et al., 2016) and Pseudomonas 

(Vicentini et al., 2022).  

In the present study, the bacteria used showed an 

inhibitory effect on the mycelial growth of the 

pathogens (Figures 1, 2, 3, Table 1). This can be 

explained by the competitive type of ecological 

interactions that these organisms perform with each 

other. Biocontrol can occur through direct or indirect 

mechanisms, mainly through antibiosis or physical 

interaction with the pathogen.  

According to Vicentini et al. (2022), the direct 

inhibitory effect is given by the release of antifungal 

substances, such as protease, chitinase, and phosphatase 

that will act on the mycelia, causing the inhibition of 

their growth and/or development, in addition to causing 

injuries to the already formed cells. Another bacterial 

strategy to impair the mycelial growth of the pathogen 

is the production of a biofilm. This mechanism occurs 

when, bacterial colonies produce a layer of physical and 

biochemical protection that involves the cluster of cells, 

being able to also physically adhere to the mycelia 

(Ribeiro et al., 2016).  

The formulation of commercial biofungicides has 

gained a substantial market (Meyer et al., 2016, Meyer 

et al., 2019, Agrofit, 2022). Its use in vivo can bring, in 

addition to controlling severity and incidence, other 

benefits for plant growth and yield (Bach et al., 2016, 

Dutkiewicz et al., 2016, Larran et al., 2016, Asaturova 

et al., 2022, Vicentini et al., 2022). Future studies are 

needed with these bacteria in formulations for in vivo 

tests to compare their social, environmental, economic, 

and agronomic impact, having as reference the chemical 

control of these pathogens. 

 

 

4. Conclusions 

We have concluded that isolates of Pseudomonas 

fluorencens, Pantoea aglomerans, and Bacillus spp. 

could control the mycelial growth of the pathogens 

Corynespora cassiicola and Drechslera tritici-repentis, 

and thus have the potential for biocontrol of diseases 

related to these pathogens. 
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