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ABSTRACT 

The current study evaluated the prediction of the yield of wheat crops in the Bagalkot district of Karnataka State, 

India. The study aimed to provide crop yield predictions to help farmers optimize their cultivation and marketing 

strategies. The model used various independent variables, such as temperature, humidity of air, and water 

resources, to predict growth in the yield of wheat crops. The correlation analysis helps determine the strength and 

direction of the relationship between the variables based on the results. The statistical analysis identifies the 

variables that have a significant impact on crop yield growth. The work developed and tested two different models 

(the Artificial Neural Network (ANN) model and the Adaptive Neuro-fuzzy Interference System (ANFIS) to 

predict crop yield growth based on the selected independent variables. The ANFIS model was particularly 

interesting as it can predict a mapping between the input and output parameters, which can be useful for 

understanding the relationships between different variables. ANFIS was considered a better predictor than ANN as 

the error percentage ranged from 0-3%. Overall, the work highlighted the importance of crop yield predictions and 

the potential benefits that simulations can generate for farmers and the agriculture sector in general. 

Keywords: Crop Yield, Correlation, ANN, ANFIS. 

 

Redes Neurais artificiais e Sistema Adaptativo de Inferência Neuro Fuzzy para análise e 

previsão da produtividade do trigo 

 

RESUMO 

O presente estudo avaliou a previsão do rendimento das culturas de trigo no distrito de Bagalkot, do Estado de 

Karnataka, India. O estudo teve como objetivo fornecer previsões de rendimento das colheitas para ajudar os 

agricultores a otimizar suas estratégias de cultivo e comercialização. O modelo usou várias variáveis independentes 

tais como temperatura, humidade do ar e recursos hídricos para prever o crescimento no rendimento das culturas de 

trigo. O trabalho se desenvolveu e testou dois modelos diferentes: Modelo de Rede Neural Artificial (Artificial 

Neural Network – ANN) e Sistema de Interferência Neuro-fuzzy Adaptativo (Adaptive Neuro-fuzzy Interference 

System - ANFIS) a fim prever o crescimento do rendimento das culturas com base nas variáveis independentes 

selecionadas. O modelo ANFIS foi particularmente interessante, pois pôde prever um mapeamento entre os 

parâmetros de entrada e saída, os quais podem ser úteis para compreender a relação entre diferentes variáveis. 

ANFIS foi considerado um modelo de predição melhor que o modelo ANN, com uma porcentagem de erro 

variando de 0-3%. De maneira geral, o trabaho destacou a importância das previsões do rendimento das culturas e 

os potenciais benefícios que as simulações podem gerar para os agricultores e para o setor agrícola em geral. 

Palavras-chave: Rendimento da colheita, Correlação, ANN, ANFIS. 
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1. Introduction 

Crop yield prediction, a crucial task in agriculture, 

plays a vital role in making informed decisions about 

crop management, harvest planning, and market 

forecasting. It helps farmers determine the best time for 

planting, selecting suitable crops, optimizing resource 

allocation, and maximizing yield. The prediction of crop 

yield can be done using various approaches, including 

statistical modeling, machine learning, and remote 

sensing. The yield of crops depends on several 

parameters, such as rainfall, temperature, humidity, soil 

attributes, and agricultural factors. Precision agriculture 

is one of the challenging problems, wherein yield 

prediction depends on several datasets such as climate, 

soil conditions, and seed quality (Beloti et al., 2017; Xu 

et al. 2019).  Statistical modeling is used for crop yield 

prediction and is based on historical data on weather, 

soil, and crop characteristics. The statistical models can 

identify the relationships between these parameters and 

crop yield, allowing for the prediction of future yields. 

Machine learning models, on the other hand, can handle 

complex nonlinear relationships between input and 

output variables and have been widely used for crop 

yield prediction. However, these models require training 

from the past huge set of variable data and depend on 

the appropriate algorithm for developing the models, 

which becomes a real challenge in determining a 

sophisticated predictive model.  Similarly, some 

researchers (Rahman et al., 2022) employed statistical 

models to forecast the production of winter wheat 

depending on environmental conditions. They compared 

the performance of three statistical models, including 

multiple linear regression, support vector regression, 

and random forest models, in predicting crop yield. The 

study showed that all three models achieved high 

accuracy in predicting crop yield, with the random 

forest model outperforming the other two models. The 

study also revealed that the most important 

environmental factors for crop yield prediction are 

precipitation, temperature, solar radiation, and soil 

organic matter content. Su et al. (2012) employed linear 

regression models to predict maize yield in China based 

on weather and soil data and reported that temperature, 

precipitation, and soil nutrients are important factors for 

predicting crop yield.  Another study used time series 

analysis to predict rice yield in West Bengal, India, 

based on historical yield data and weather information 

(Bhavani, et al., 2018) and demonstrated that the 

autoregressive integrated moving average (ARIMA) 

model was effective in predicting rice yield.  

Machine learning (ML) models have been widely 

used for crop yield prediction, as they can handle 

complex nonlinear relationships between input and 

output variables. The ML approaches are used in a wide 

range of applications, such as manufacturing processes, 

supply chain management, agriculture sectors, and 

many more (Ayyappa et al., 2021; Manoj et al., 2020). 

The linear models make it easy to understand the 

relationship between the dependent and independent 

variables, but they fail to achieve high prediction 

accuracy. This is mainly due to their inability to relate 

the nonlinear interactions among the variables 

(Ansarifar et al., 2021). Over the years, researchers have 

employed various ML methods to address crop yield 

prediction. For instance, Drummond et al. (2003) 

utilized stepwise linear regression models to examine 

the relationship between yield and topographic 

characteristics; they minimized overfitting and predicted 

an optimal yield model using a neural network. 

Similarly, another study employed the crop yield with a 

random forest model, compared it to the yield achieved 

in the MLR method, and reported that the random forest 

method is effective in crop yield prediction, providing 

acceptable predictions in smart agriculture with 

reasonable data (Jeong et al., 2016). 

Despite the effectiveness of the random forest 

method, its usage in predicting crop yield and related 

output is limited (Fukuda et al.,2013) as each dataset is 

unique, and some ML models may not be suitable for a 

particular system (Gromping et al.,2009). Moreover, 

crop yield prediction changes over time, as it behaves 

nonlinearly depending on several factors, such as soil 

characteristics, climate, the genetic makeup of the crop, 

and pest infestations. To overcome these challenges, 

several ML techniques have been proposed for crop 

yield prediction, including support vector machines, 

deep neural networks, and ensemble models, among 

others. Each of these models has its strengths and 

weaknesses, and selecting the appropriate model 

depends on the data available and the research 

objectives. A deep neural network (DNN) can capture 

complex nonlinear relationships between crop yield and 

its predictors. Ensemble models such as random forests 

and gradient boosting can handle high-dimensional data 

and noisy datasets. ML methods have shown immense 

potential in predicting crop yield and related outputs. 

However, selecting an appropriate model for a particular 

dataset is critical for making accurate predictions. 

Additionally, researchers should continually evaluate 

the performance of their models over time, as crop yield 

prediction changes with time and depends on several 

factors. 

Of late, several models for yield production with 

suitable methods have been proposed by the research 

community. They relate to corn yield predictions with 

detailed correlation and regression algorithms (Sarturi et 

al., 2022).  Predicting crop yield and enhancing crop 

management are two associated and crucial concepts 

(Russo et al., 2015). Furthermore, support vector 

machines (SVM) have proven to be a better method for 
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performing regression analysis and predicting crop 

yield. The correlation of a sediment yield from monsoon 

data in determining the accuracy of prediction was 

established (Misra et al., 2009).  Another study 

examined the details of crop yield prediction using 

different models and their importance in the ML 

processes (Elavarasan et al., 2018).  Another research 

aimed at predicting the soil organic matter content 

(SOM) in crop fields using artificial neural networks 

(ANNs) and regression models (Achieng et al., 2019) 

and demonstrated that the ANN model outperformed the 

regression models, with an R-squared value of 0.804 

and a root mean squared error (RMSE) of 0.261% for 

the ANN model compared to an R-squared value of 

0.694 and an RMSE of 0.323% for the best regression 

model. The ANN and adaptive neuro-fuzzy inference 

system (ANFIS) for the prediction of crop yield using 

two different models were evaluated and the use of the 

ANFIS model was suggested as a reliable tool for crop 

yield prediction in agriculture (Kalpana et al., 2020).  A 

study on the modeling of wheat yield using ANN and 

ANFIS models employed 16-year-long data about wheat 

yield observations and weather data and evaluated the 

models using the coefficient of determination (R²) and 

RMSE (Kumar et al.,2023). The ANFIS model showed 

better performance with R² values of 0.85 and 0.83 for 

training and testing, respectively. Razavi et al. (2011) 

used ANFIS to predict pear yield based on weather 

parameters and soil properties and demonstrated that the 

ANFIS model outperformed traditional regression 

models in predicting crop yield. The prediction of soil 

nutrients based on soil properties and weather data was 

carried out with the ANFIS method (Ramsauer et al., 

2022). The study revealed that ANFIS could accurately 

predict soil nutrients, which can help farmers in 

fertilizer management. The use of ANFIS to predict 

dairy cow milk yield based on environmental factors 

and management practices was also studied (Gholami et 

al., 2018). They showed that ANFIS can accurately 

predict milk yield, thereby helping farmers optimize 

feeding and management practices. Based on 

photographs of the crop leaves, the ANFIS was used to 

identify tomato illnesses and ANFIS was shown to 

achieve high accuracy in diagnosing diseases, which can 

help farmers in timely disease management (Kamath et 

al., 2021). 

A literature survey on crop yield prediction reveals 

that various modeling techniques have been applied for 

predicting crop yields, including statistical modeling, 

ML, and deep learning-based approaches. Some of the 

commonly used statistical techniques are regression, 

multivariate regression, and time series analyses. ML-

based approaches include artificial neural networks, 

support vector regression, decision trees, and random 

forests. Deep learning-based approaches such as 

convolutional neural networks and recurrent neural 

networks have also been used for crop yield prediction 

using remote sensing and weather data. 

To elaborate on the importance of using tailored 

modeling techniques for specific crops and regions, 

understanding the varying requirements of different 

crops for growth and development is essential. For 

instance, wheat has specific temperature and water 

requirements for optimal growth and yield production. 

In addition, environmental factors, such as soil quality, 

sunlight exposure, and pests and diseases, vary 

significantly across different regions, even within the 

same country. Thus, modeling techniques that work 

well for one crop or region may not necessarily perform 

well for another. 

Bagalkot district in Karnataka, India, predominantly 

cultivates wheat as a major crop. However, the region 

experiences irregular rainfall patterns throughout the 

year, which poses a significant challenge to wheat 

cultivation. Accurately predicting the atmospheric 

conditions is therefore crucial to aid farmers in planning 

and managing their crops. In this regard, novel 

modeling techniques that consider the specific 

requirements of wheat in terms of temperature and 

water sources can provide valuable insights into the 

potential yield production of the crop under varying 

environmental conditions. In conclusion, employing 

tailored modeling techniques for specific crops and 

regions can significantly enhance the accuracy and 

reliability of yield predictions. Timely and optimum use 

of temperature and water sources as predictors for wheat 

yield prediction in Bagalkot can aid farmers in planning 

and managing their crops to mitigate the adverse effects 

of irregular rainfall patterns. Therefore, it is essential to 

assess and compare the efficiency of different modeling 

approaches tailored to specific crops and regions to 

optimize crop yield and ensure food security. 

 

 

2. Material and Methods 

Bagalkot district, located in the state of Karnataka, 

India, is well-known for cultivating wheat crops on a 

large scale. The farmers in this region begin sowing 

seeds in September and complete the harvest by March 

in the ensuing year. To collect data regarding crop yield 

and water sources in Bagalkot district, the government 

website (https://eands.dacnet.nic.in) was referred to. 

Additionally, temperature and humidity data spanning 

from the year 2000 to 2020 were obtained from 

https://www.timeanddate.com/weather/. Table 1 

summarizes the dataset obtained from various sources, 

including the four independent variables: temperature, 

humidity, rainfall, and irrigation sources (canal, well, or 

other means) for an average month from September to 

March. 
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Table 1. Agricultural Dataset  
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999 27.31 75.33 1007 21584 29875 1.38 66.22 5.93E4 5.21E4 7.63E4 1.88E5 

2000 27.83 75.5 871 23969 37181 1.55 85.61 6.34E4 5.79E4 7.73E4 1.99E5 

2001 25.75 74.83 568 25855 34969 1.35 72.77 5.75E4 6.52E4 5.91E4 1.82E5 

2002 27.66 74.91 464 23327 32386 1.39 65.76 2.58E4 8.12E4 6.89E4 1.76E5 

2003 26.83 74.25 439 15300 18327 1.20 72.16 1.56E4 7.27E4 6.93E4 1.58E5 

2004 26.16 79.66 571 21202 32903 1.55 68.64 5.06E4 8.39E4 7.77E4 2.12E5 

2005 26.11 75.66 1119 21840 34948 1.60 69.35 5.97E4 8.56E4 7.70E4 2.22E5 

2006 26.83 76.41 994 20992 27344 1.30 75.81 4.65E4 8.15E4 8.62E4 2.14E5 

2007 27.25 75.16 899 23208 38300 1.65 78.57 4.75E4 9.19E4 8.85E4 2.28E5 

2008 26.41 74.83 1022 25668 37486 1.46 80.68 5.22E4 9.78E4 1.01E5 2.51E5 

2009 27.33 74.83 1054 26356 36213 1.37 80.8 5.48E4 9.98E4 1.06E5 2.61E5 

2010 27.33 75.16 990 24685 40235 1.63 86.87 5.48E4 1.04E5 1.17E5 2.75E5 

2011 27.33 74.75 960 25676 41483 1.62 94.88 5.78E4 1.08E5 1.18E5 2.83E5 

2012 27.51 74.54 980 20920 18662 0.89 93.51 2.35E4 1.09E5 1.20E5 2.53E5 

2013 26.83 75.32 967 17901 20713 1.16 95.86 5.15E4 1.08E5 1.14E5 2.74E5 

2014 26.33 73.75 947 23237 36071 1.55 86.53 5.27E4 1.06E5 1.16E5 2.75E5 

2015 28.00 77.33 1013 20118 27808 1.38 92.29 2.03E3 1.22E5 1.08E5 2.33E5 

2016 27.66 77.41 851 22101 28303 1.28 98.51 2.41E4 1.25E5 9.66E4 2.46E5 

2017 27.52 75.83 967 22675 33798 1.49 99.87 3.58E4 1.29E5 1.03E5 2.67E5 

2018 27.41 76.6 1197 24665 39647 1.61 103.63 5.90E4 1.36E5 1.21E5 3.15E5 

2019 27.58 75.80 990 21038 33757 1.60 107.86 5.31E4 1.30E5 1.10E5 2.93E5 

2020 27.75 76.16 1109 24685 40235 1.63 109.59 4.40E4 1.80E5 1.38E5 3.61E5 

 

The variables considered for a given year of wheat 

crop cultivation were the area, production, and yield. 

Initial examination of the data revealed that wheat crop 

cultivation had steadily increased over the years, which 

could be attributed to the variation in the availability of 

water resources and changing levels of rainfall in the 

region. Correlation techniques are statistical methods 

that allow us to explore and quantify the relationship 

between two or more variables. Table 2 presents the 

coefficient of correlation a measure of the strength and 

direction of the relationship between the dependent and 

independent variables.  

Scatter diagrams are visual representations of the 

relationship between two variables, with each point 

representing an observation of the two variables. In the 

present study, Figure 1 shows the relationship between 

different variables and provides insight into the nature 

of the relationship between them.  The results indicate a 

positive relationship between rainfall and crop 

production. This suggests that when there is more 

rainfall, there is a higher crop yield. Additionally, 

moderate correlations ranging from 0.552 to 0.850 were 

observed between different sources of water used for 

crop cultivation, including wells, canals, and other 

sources. This implies that the type of water source used 

for crop cultivation affects crop yield. 

The scatter diagram between water sources and crop 

yield also established a positive correlation, further  

 

 

highlighting the importance of water as the main 

resource for crop cultivation. The use of different water 

sources, such as canals, wells, or tankers, showed a 

strong correlation with the demand for crops. This 

suggests that the availability of water resources 

influences the demand for crops. The study also showed 

that the main water resource for wheat crop cultivation 

was from wells or bore water resources. This indicates 

that the type of water source used for crop cultivation 

may vary depending on the type of crop grown with 

other variable parameters. 

Furthermore, the study revealed that the 

surrounding temperature, humidity, and water 

resources are key factors affecting wheat crop 

cultivation. Farmers choose to cultivate crops based on 

these environmental conditions, which can vary 

throughout the year. As shown in Figure 1B, the yield 

increases with an increase in the area of land used for 

cultivation, which also depends on the available 

environmental conditions. 

Table 2 Coefficient of correlations 
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Yield 0.35 0.45 0.56 0.6 0.52 0.54 

Demand 0.52 0.42 0.53 0.85 0.82 0.84 
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Figure 1 (A) Variation of yield for average rainfall, (B) Variation of yield for area, (C) Variation of yield for Total water source, and 

(D) Monthly coefficient of correlations. 

 

Water resources are critical for crop cultivation as 

they have a strong positive correlation with crop yield 

over time. Figure 1C illustrates this relationship. 

Adequate availability of water plays a crucial role in 

crop growth and development. Without adequate water 

resources, crops cannot grow properly and their yield 

decreases. Therefore, farmers must ensure to have 

enough water for their crops. They can do this by using 

irrigation techniques or relying on rainfall. Overall, the 

study highlights the importance of water resources in 

crop cultivation, with a strong positive correlation 

between water resources and crop yield over time. 

Temperature and humidity also play a predominant 

role in farming. Temperature affects plant growth and 

development by influencing the rate of photosynthesis, 

respiration, and transpiration. The optimal temperature 

range for most crops is between 20°C and 30°C. Above 

or below this range, the yield decreases. Similarly, 

humidity affects crop growth by regulating 

transpiration, which also involves water loss from 

plants. The optimal humidity range for most crops is 

between 60% and 80%. In dry weather conditions, the 

duration of sunshine has a good correlation with crop 

yield (Chmielewski and Pots, 1995). Longer periods of 

sunshine can compensate for the lack of humidity to 

some extent. 

In Bagalkot, crop cultivation begins in September and 

harvesting happens in March (seven months). During this 

time, humidity and temperature strongly affect crop yield. 

Figure 1D shows the correlation between the maximum 

temperature and minimum humidity value for each month 

and how it affects crop yield for different years. The 

maximum humidity was always found between 12 am to 

5 am, and the minimum humidity was found in mid-

afternoon. There was a positive correlation between 

temperature and humidity towards crop yield. This 

explains that crop yield mainly depends on the duration 

of sunshine and humidity during the afternoon. In the 

months between September to November, the rainfall had 

improved humidity, resulting in improved crop 

cultivation. The higher correlation was found during the 

harvesting period, i.e. in March when the higher humidity 

and temperature during the daytime had improved crop 

cultivation. Therefore, farmers must pay attention to 

weather patterns and adjust their farming practices 

accordingly to ensure optimal crop yield. 

    

      

B 
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3. Results and Discussion 

In the current study, various input parameters were 

considered, such as year, temperature, humidity, 

average rainfall, total water source, area, production, 

and yield, out of which temperature, humidity, average 

rainfall, and total water source were found to be 

significant predictors of Yield. The ANN and ANFIS 

models were used to predict the yield, and a MATLAB 

toolbox was employed for the same. For the ANN 

model, 22 iterations were performed, and the model 

was trained with 70% of the data, validated with 15%, 

and tested with 15% using the Levenberg-Marquardt 

training method and feedforward backpropagation.  

The optimal architecture was obtained through a 

trial-and-error method and achieved at 4, 10, 1, and 1, 

as shown in Figure 2A. The regression plot drawn in 

Figure 3 shows the training, testing, and validation 

stages, based on which the optimal level of the model 

was decided. The membership functions used were log 

sigmoid and pure line functions, and the mean square 

error was chosen as the performance metric for 

evaluation. On the other hand, the Adaptive Neuro-

fuzzy Interference System (ANFIS) model was trained 

with 81 rules, 3 input layers, and 1 output layer, using 

trim membership function type with constant variation 

and 4 hidden layers (Figure 2B).  

 
Figure 2 Architecture of Optimal (A) ANN model and (B) ANFIS model 

 

 

 
Figure 3 Regression plot for ANN optimal model.  

A 
B 
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The membership function was chosen based on the 

average training and testing errors by trial-and-error 

methods. For the optimal model, the average training 

and testing errors were 3.05E-08 and 0.29934, 

respectively. The model was trained with an epoch of 

1000. It employed 17 training and 5 testing data for 

optimal performance. Table 3 shows that the Adaptive 

Neuro-fuzzy Interference System (ANFIS) model has 2 

times less error (0-3%) than the ANN model (0-6%), 

indicating that the ANFIS model is a better predictor 

compared to the ANN model. The performance of the 

models was evaluated using Mean square error (MSE), 

Mean Absolute error (MAE), and Root mean square 

error (RMSE), as depicted in Table 4. The optimal 

ANFIS model also provides a 3-D mapping between 

input and output parameters, as shown in Figure 4. 

Similar analogies were used to design optimal models 

(Manoj et al., 2021; 2022). 

This study showed a positive relationship between 

rainfall and crop production, indicating that higher 

rainfall results in a higher crop yield. Additionally, 

moderate correlations were observed between different 

sources of water used for crop cultivation, including 

wells, canals, and other sources. This suggests that the 

type of water source used for crop cultivation may 

affect crop yield.  The present study also revealed that 

the type of water source used for crop cultivation may 

vary depending on the type of crop being grown. Wells 

or bore water resource was found to be the main water  

resource for wheat crop cultivation. Overall, these 

findings suggest that both rainfall and water sources 

influence crop yield. While rainfall can be unpredictable 

and subject to seasonal variations, the availability and 

management of water resources can have a significant 

impact on crop cultivation. Therefore, farmers need to 

consider both rainfall and water sources in making 

informed decisions regarding crop cultivation and water 

resource management (Figure 4A). 

Rainfall and temperature are crucial factors that can 

significantly affect crop yield. Adequate rainfall is 

necessary for crop growth, but excessive or inadequate 

rainfall can result in adverse effects on crop yield, such 

as waterlogging or drought stress. Similarly, 

temperature plays a critical role in crop growth and 

development, and each crop has its own optimal 

temperature range. Extreme temperatures can result in 

decreased agricultural output, impaired crop quality, and 

increased vulnerability to pests and diseases, even if 

they are unexpectedly high or low.  

The model employed in the present study examined 

the correlation between average rainfall, temperature, 

and wheat crop yield, considering the local 

environmental conditions. Notably, this model is 

specific to wheat crops and may not be applicable to 

other crops or different environmental conditions, as 

each crop has distinct water and temperature 

requirements that vary based on different factors such as 

soil type, topography, and altitude.  

Table 3:  Agricultural data set used for ANN and ANFIS prediction of Yield with percentage error 

zz 
Humidity 

(in %) 

Average 

rain fall 

(mm) 

Total 

Water 

source 

 

Yield 
ANN 

Predicted 

Percentage 

Error 

ANFIS 

Predicted 

Percentage 

Error 

27.30 75.33 1007.9 1.8E5 1.38 1.38 0.060 1.381 0.060 

27.80 75.51 871.3 1.98E5 1.55 1.57 1.788 1.578 1.788 

25.80 74.83 568 1.81E5 1.35 1.34 0.045 1.349 0.045 

27.73 74.91 464 1.75E5 1.39 1.39 0.007 1.390 0.007 

26.83 74.25 439 1.57E5 1.20 1.20 0.070 1.211 0.903 

26.16 79.66 571 2.12E5 1.55 1.55 0.536 1.558 0.536 

26.11 75.66 1119 2.22E5 1.60 1.59 0.154 1.598 0.154 

26.83 76.41 994 2.14E5 1.30 1.30 0.022 1.310 0.791 

27.25 75.16 899 2.27E5 1.65 1.64 0.152 1.687 2.272 

26.41 74.83 1022 2.51E5 1.46 1.46 0.305 1.464 0.305 

27.33 74.83 1054 2.60E5 1.37 1.36 0.363 1.365 0.363 

27.33 75.16 990 2.75E5 1.63 1.62 0.510 1.622 0.510 

27.33 74.75 960 2.83E5 1.62 1.62 0.042 1.621 0.042 

27.50 74.51 980 2.52E5 0.89 0.89 0.935 0.898 0.935 

26.83 75.12 967 2.73E5 1.16 1.20 3.805 1.174 1.219 

26.33 73.75 947 2.75E5 1.55 1.54 0.462 1.543 0.462 

28.00 77.33 1013 2.32E5 1.38 1.37 0.119 1.378 0.119 

27.66 77.41 851 2.42E5 1.28 1.27 0.269 1.277 0.269 

27.51 75.83 967 2.67E5 1.49 1.50 1.230 1.508 1.230 

27.41 76.62 1197 3.15E5 1.61 1.61 0.000 1.610 0.000 

27.58 75.81 990 2.93E5 1.60 1.50 6.111 1.592 0.486 

27.75 76.01 1109 3.61E5 1.63 1.63 0.091 1.631 0.091 
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Table 4: Evaluation matrices for ANN and ANFIS models 

Sl. 

No. 

Measurement  

Index 

Yield 

ANN ANFIS 

1. RMSE 0.15767 0.128002 

2 MSE 0.02486 0.016384 

3 MAE 0.01260 0.008192 

 

Nonetheless, the developed model can be useful for 

predicting crop yield with respect to temperature and 

rainfall (Figure 4B). The model reveals that the 

correlation between humidity, temperature, and crop 

yield is necessary for crop growth and development. 

Temperature and humidity have a direct relationship 

and impact the atmospheric water vapor content, which 

is essential for crop growth (psychrometry). 

Maintaining moderate humidity and temperature values 

is crucial for improving crop yield. High humidity can 

cause moisture stress and increase the probability of 

pest and disease attacks, whereas low humidity can 

lead to moisture loss and lower crop yield. High-

temperature levels can increase the rate of 

evapotranspiration and result in water stress, whereas 

low temperatures can slow down crop growth.  

Thus, while there may not be a straightforward 

correlation between humidity, temperature, and crop 

yield in the study, these environmental factors have 

been shown to play a crucial role in crop cultivation 

and can affect crop yield in various ways (Figure 4C). 

Furthermore, the results suggested that the type of 

water source used for crop cultivation may affect crop 

yield, and there is a strong correlation between water 

sources and the demand for crops.  

 

                 
Figure 4. ANFIS input and output parametric variation obtained from the optimal model.
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The main water resource for wheat crop cultivation is 

wells or bore water resources. This suggests that the type 

of water source used for crop cultivation may vary 

depending on the type of crop being grown. Additionally, 

surrounding temperature and water resources are found to 

be the key factors affecting wheat crop cultivation, and 

farmers choose to cultivate crops based on these 

environmental conditions, which can vary throughout the 

year. The crop yield was observed to increase with the 

rise in the area of land used for cultivation, which also 

depends on the available environmental conditions. 

Therefore, a correlation between water sources, 

temperature, and crop yield seems probable, with the 

optimal combination of these factors varying depending 

on the type of crop being grown and the local 

environmental conditions (Figure 4D). 

This study examined the relationship between 

humidity, water source, and crop yield. High humidity 

can increase the atmospheric water vapor content, while 

water sources provide the necessary water for crop 

growth. However, too much humidity can lead to 

moisture stress and increased susceptibility to pests and 

diseases. On the contrary, inadequate water supply can  

lead to drought stress and reduced crop yield. Therefore, 

both humidity and water sources should be balanced to 

ensure optimal crop growth and yield. The study also 

found a moderate correlation between different sources 

of water used for crop cultivation, including wells, 

canals, and other sources, and crop yield. This indicates 

that the type of water source used for crop cultivation 

can have an impact on crop yield.  

The scatter diagram between water sources and crop 

yield (Figure 1A) also revealed a positive correlation, 

further supporting the importance of water as the main 

resource for crop cultivation. The use of different water 

sources, such as canals, wells, or tankers, showed a strong 

correlation with the demand for crops, indicating that the 

availability of water resources may influence the demand 

for crops. In terms of humidity, while there may not be a 

direct correlation between humidity and crop yield in the 

study, high humidity can increase the atmospheric water 

vapor content, leading to moisture stress and increased 

susceptibility to pests and diseases. Therefore, humidity 

levels should be monitored and balanced to ensure 

optimal crop growth and yield (Figure 4E). 

 

 

4. Conclusions 

This study has implications for policy formulation 

and farmer decision-making regarding crop cultivation 

and water resource management, enabling 

policymakers to shape sustainable agricultural policies 

and enabling farmers to increase yield, enhance 

profitability, and meet market demands. Temperature, 

humidity, average rainfall, and total water source are 

significant environmental determinants driving crop 

growth and development. Rainfall and temperature 

play a significant role in crop growth, with extreme 

weather conditions hampering yield and deviations 

from optimal temperature range affecting crop yield 

and quality. The interplay of humidity, temperature, 

and crop yield is crucial for crop growth and 

development, with wells and borewater dominating as 

primary water sources for wheat cultivation. The 

results also showed that the type of water source used, 

such as wells, canals, or tankers, may influence crop 

productivity and demand. The correlation ranges from 

0.55 to 0.8, are in accordance with the investigation. 

Temperature, humidity, average rainfall, and total 

water source were found to be important predictors of 

crop yield in the study.  
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