Visualizações: 651


  • Ana Beatriz Riguetti Zanardo Botelho Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo (ESALQ/USP), Departamento de Entomologia e Acarologia, CP 9, CEP 13418-900, Piracicaba, São Paulo, Brasil.
  • Ivana Fernandes da Silva Universidade Federal da Grande Dourados (UFGD), Departamento de Entomologia e Conservação da Biodiversidade, Km 12, CP 364, CEP 79804-970, Dourados, Mato Grosso do Sul, Brasil.
  • Crébio José Ávila Embrapa Agropecuária Oeste (EMBRAPA/CPAO), BR 163, Km 253,6, CP 661, CEP 79804-970, Dourados, Mato Grosso do Sul, Brasil.




The use of nucleopolyhedroviruses (NPVs) can provide an effective and environmentally benign alternative to synthetic chemicals. The efficacy and persistence of their occlusion bodies may be affected by several factors. The present study investigated the efficacy of isolate Chin-IA (I-A) (ChinSNPV) on third-instar Chrysodeixis includens larvae after 10 days of its application in soybean plants under semi-field conditions. Two concentrations of virus (2x1011 and 10x1011 PIB ha-1) and water (control treatment) were applied in soybean plants. Leaves were collected 0, 2, 4, 6, 8 and 10 days after application of treatments, and then used as disc format to feed the soybean looper larvae in the lab. It was considered a split plot scheme with a randomized complete block design (three treatments and eight repetitions) and the mortality data adjusted to a regression equation using the exponential decay model. In the day of application, the lowest and highest virus concentration caused 87.5 and 100% of mortality of larvae, respectively. However, their efficiency was reduced, on average, 70% after four days of the application. Among the factors may have compromised the persistence and activity of the isolate studied, the time after its application and ultraviolet radiation may have had a strong influence on this results. Its notable the potential use of ChinSNPV in programs for the management of this pest in soybean. Similarly, the properly application of this virus at sundown will ensure its efficiency for an extended period.


(I) Alexandre, T.M., Ribeiro, Z.M.A., Craveiro, S.R., Cunha, F., Fonseca, I.C., Moscardi, F., Castro, M.E.B., 2010. Evaluation of seven viral isolates as potential biocontrol agents against Pseudoplusia includens (Lepidoptera: Noctuidae) caterpillars. Journal of Invertebrate Pathology, 105, 98–104.

(II) Alves, S.B., Lecuona, R.E., 1998. Epizootiologia aplicada ao controle microbiano, in: Alves, S. B. (Ed.), Controle microbiano de insetos. 2nd.ed. Piracicaba, FEALQ, pp. 97-169.

(III) Batista Filho, A., Alves, S.B., Augusto, N.T., Cruz, B.P.B., 1992. Persistência de duas formulações de Baculovirus anticarsia sobre folhas de soja, em condições de campo. Pesquisa Agropecuária Brasileira, 27, 1005-1009.

(IV) Beas-Catena. A., Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., Molina-Grima, E., 2014. Baculovirus Biopesticides: An Overview. The Journal of Animal & Plant Sciences, 24, 362-373.

(V) Bernal, A., Simón, O., Williams, T., Caballero, P., 2014. Stage-specific insecticidal characteristics of a nucleopolyhedrovirus isolate from Chrysodeixis chalcites enhanced by optical brighteners. Pest Management Science, 70, 798-804.

(VI) Bernardi, O., Malvestiti, G.S., Dourado, P.M., Oliveira, W.S., Martinelli, S., Berger, G.U., Head, G.P., Omoto, C., 2012. Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Management Science, 68, 1083-1091.

(VII) CONAB. Companhia Nacional de Abastecimento (Brasil), 2018. Acompanhamento de safra brasileira: grãos, v. 5, n.7, Safra 2017/18 - Sétimo levantamento, Brasília, p. 1-139.

(VIII) Craveiro, S.R., Melo, F.L., Ribeiro, Z.M.A., Ribeiro, B.M., Báo, S.N., Inglis, P.W., Castro, M.E.B., 2013. Pseudoplusia includens single nucleopolyhedrovirus: Genetic diversity, phylogeny and hypervariability of the pif-2 gene. Journal of Invertebrate Pathology, 114, 258-267.

(IX) Craveiro, S.R., Inglis, P.W., Togawa, R.C., Grynberg, P., Melo, F.L., Ribeiro, Z.M.A., Bergmann, M.R., Báo, S.N., Castro, M.E.B., 2015. The genome sequence of Pseudoplusia includens single nucleopolyhedrovirus and an analysis of p26 gene evolution in the baculoviruses. BMC Genomics, 16, 127.

(X) Czepak, C., Albernaz, K.C., 2014. Manejo avançado: Surtos de falsa-medideira. Cultivar Grandes Culturas, 178, 20-24.

(XI) Gifani, A., Marzban, R., Safekordi, A., Ardjmand, M., Dezianian, A., 2015. Ultraviolet protection of nucleopolyhedrovirus through microencapsulation with different polymers. Biocontrol Science and Technology, 25, 814-827.

(XII) Grzywacz, D., 2016. Basic and applied research: Baculovirus, in: Lacey, L.A., (Ed.), Microbial control of insect and mite pests: From theory to practice. 1st.ed. Yakima, Academic Press, pp. 27-46.

(XIII) Harrison, R., Hoover, K., 2012. Baculoviruses and Other Occluded Insect Viruses, in: Vega, F.E., Kaya, H.K., (Eds.), Insect Pathology. Academic Press, Elsevier, pp. 73-131.

(XIV) Jaronski, S.T., 2010. Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159-185.

(XV) Jeyarani, S., Sathiah, N., Karuppuchamy, P., 2013. An in vitro method for increasing UV-tolerance in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) Nucleopolyhedrovirus. Biocontrol Science and Technology, 23, 305-316.

(XVI) Johnson, D.W., Boucias, D.G., Barfield, C.S., Allen, G.E., 1982. A temperature dependent model for a nucleopolyhedrosis virus of the velvetbean caterpillar, Anticarsia gemmatalis (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 40, 292–298.

(XVII) Katsuma, S., 2015. Baculovirus controls host caterpillars by manipulating host physiology and behavior. AGri-Bioscience Monographs, 5, 1-27.

(XVIII) Moscardi, F., Souza, M.L., Castro, M.E.B., Moscardi, M., Szewczyk, B., 2011. Baculovirus pesticides: present state and future perspectives, in: Ahmad, I., Ahmad, F., Pichtel, J., (Eds), Microbes and Microbial Technology. New York, Springer, pp. 415-445.

(XIX) Santos, S.R., Specht, A., Carneiro, E., Paula-Moraes, S.V., Casagrande, M.M., 2017. Interseasonal variation of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) populations in the Brazilian Savanna. Revista Brasileira de Entomologia, 61, 294-299.

(XX) Silva, F.A.S., Azevedo, C. A. V. de., 2002. Versão do programa computacional ASSISTAT para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, 4, 71-78.

(XXI) Silva, M.T.B., Moscardi, F., 2002. Field Efficacy of the Nucleopolyhedrovirus of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae): Effect of formulations, water pH, volume and time of application, and type of spray nozzle. Neotropical Entomology, 31, 75-83.

(XXII) Stevenson, P.C., D’cunha, R.F., Grzywacz, D., 2010. Inactivation of baculovirus by isoflavonoids on chickpea (Cicer arietinum) leaf surfaces reduce the efficacy of Nucleopolyhedrovirus against Helicoverpa armigera. Journal of Chemical Ecology, 36, 227-235.

(XXIII) Sutanto, K.D., El Salamouny, S., Tufail, M., Rasool, K.G., Sukirno, S., Shepard, M., Shapiro, M., Aldawood, A.S., 2017. Evaluation of Natural Additives to Enhance the Persistence of Spodoptera littoralis (Lepidoptera: Noctuidae) Nucleopolyhedrovirus (SpliMNPV) Under Field Conditions in Saudi Arabia. Journal of Economic Entomology, 110, 924-930.

(XXIV) Young, S.Y., Yearian, W.C., 1974. Persistence of Heliothis VPN on foliage of cotton, soybean, and tomato. Environmental Entomology, 3, 253-255.

(XXV) Wu, Z.W., Fan, J.B., Yu, H., Wang, D., Zhang, Y.L., 2015. Ultraviolet protection of the Cydia pomonella granulovirus using zinc oxide and titanium dioxide. Biocontrol Science and Technology, 25, 97-107.




How to Cite

Botelho, A. B. R. Z., da Silva, I. F., & Ávila, C. J. (2018). EFFECTIVENESS REDUCTION OF NUCLEOPOLYHEDROVIRUS AGAINST Chrysodeixis includens DAYS AFTER APPLICATION IN SOYBEAN PLANTS. REVISTA DE AGRICULTURA NEOTROPICAL, 5(4), 94–99. https://doi.org/10.32404/rean.v5i4.2901