IN VITRO COMPATIBILITY BETWEEN INSECTICIDES AND THE COMMERCIAL BIOINSECTICIDE AGREE® WG

Visualizações: 722

Authors

  • Elisângela de Souza Loureiro Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, Programa de Pós Graduação em Produção Vegetal. https://orcid.org/0000-0002-9708-3775
  • Luis Gustavo Amorim Pessoa Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul.
  • Thayla Christiane Putrick Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul.
  • Ariane de Andréa Pantaleão Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, Programa de Pós Graduação em Produção Vegetal.
  • Pamella Mingotti Dias Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Programa de Pós Graduação em Entomologia e Conservação da Biodiversidade.

DOI:

https://doi.org/10.32404/rean.v7i1.3597

Abstract

Compatibility studies are essential for the integration and simultaneous use of chemical and biological pest control methods since they are necessary for an Integrated Pest Management (IPM) program. In this work, the aim was to evaluate the compatibility of insecticides used in soybean and cotton crops for pest control with Bacillus thuringiensis (Bt). The in vitro inoculation technique was used with B. thuringiensis var. kurstaki and B. thuringiensis var. aizawai, in culture medium containing the following insecticides: beta-cyfluthrin (Bulldock®), methomyl (Bazuka®), thiamethoxam + lambda-cialotrina (Engeo Pleno®), zeta-cypermethrin (Fury 200®), acetamiprid (Saurus®), bifenthrin + carbosulfano (Talisman®) and bifenthrin (Talstar®), in Petri dishes. The Petri dishes were taken to the B.O.D. (Biological Oxygen Demand), at a temperature of 30 ± 1 ºC, 70 ± 10% RH (relative humidity) and a photophase of 12 h, for 24 hours. Colony growth was measured, and Colony Forming Units (CFU) counted in the total area of the Petri dish. The product that allowed growth to be significantly equal to or higher than the control was established as compatible, and the one that did not allow growth or was significantly less than the control was incompatible. It was found that all insecticides were classified as incompatible with the bioinsecticide.

References

(I) Agostini, L.T., Duarte, R.T., Volpe, H.X.L., Agostini, T.T., Carvalho, G., Abrahão, Y.P., Planhnk, R.A., 2014. Compatibility among insecticides, acaricides, and Bacillus thuringiensis used to control Tetranychus urticae (Acari: Tetranychidae) and Heliothis virescens (Lepidoptera: Noctuidae) in cotton fields. African Journal of Agricultural, 9(11), 941-949.

(II) AGROFIT, 2020. Sistema de Agrotóxicos Fitossanitários. http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/agrofit (acessado 20 de fevereiro de 2020).

(III) Almeida, J.E.M., Batista Filho, A., Lamas, C., Leite, L.G., Trama, M., Sano, A.H., 2003. Avaliação da compatibilidade de defensivos agrícolas na conservação de microrganismos entomopatogênicos no manejo de pragas do cafeeiro. Arquivos do Instituto Biológico, 70(1), 79-84.

(IV) Batista Filho, A., Almeida, J.E.M., Lamas, C., 2001. Effect of thiamethoxam on entomopathogenic microorganisms. Neotropical Entomology, 30(3), 437-447.

(V) Manachini, B., 2002. Compatibility of chemical and biological pesticides, in: Pimentel, D., (Ed.), Encyclopedia of pest management. CRC Press, Boca Raton, p. 134-137.

(VI) Morris, O.N., 1977. Compatibility of 27 chemical insecticides with Bacillus thuringiensis var. kurstaki. Canadian Entomology, 109(6), 855-864.

(VII) Palma, L., Muñoz, D., Berry, C., Murillo, J., Caballero, P., 2014. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity. Toxins, 6(12), 3296-3325.

(VIII) Panizzi, A.R., 2013. History and contemporary perspectives of the Integrated Pest Management of soybean in Brazil. Neotropical Entomology, 42(2), 119-127.

(IX) Pinto, L.M.N., Dörr, N.C., Ribeiro, A.P.A., Salles, S.M., Oliveira, J.V., Menezes, V.G., Fiuza, L.M., 2012. Bacillus thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests. Brazilian Journal of Microbiology, 43(2), 618-626.

(X) Ramaraje, N.V.U., Govindu, H.C., Shastry, K.S.S., 1967. The effect of certain insecticides on the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae. Journal of the Invertebrate Pathology, 9(3), 398-403.

(XI) Schünemann, R., Knaak, N., Fiusa, L.M., 2014. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiology, 1-12.

(XII) Tamai, M.A., Alves, S.B., Lopes, R.B., Faion, M., Padulla, L.F.L., 2002. Toxicidade de produtos fitossanitários para Beauveria bassiana (Balls.) Vuill. Arquivos do Instituto Biológico, 69(3), 89-96.

(XIII) van Frankenhuyzen, K., 2013. Cross-order and cross phylum activitity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology, 114(1), 76-85.

Downloads

Published

2020-04-03

How to Cite

Loureiro, E. de S., Pessoa, L. G. A., Putrick, T. C., Pantaleão, A. de A., & Dias, P. M. (2020). IN VITRO COMPATIBILITY BETWEEN INSECTICIDES AND THE COMMERCIAL BIOINSECTICIDE AGREE® WG. REVISTA DE AGRICULTURA NEOTROPICAL, 7(1), 49–52. https://doi.org/10.32404/rean.v7i1.3597

Most read articles by the same author(s)