IRRIGATION WITH WATER DEFICIT APPLYING MAGNETIC WATER ON SCARLET EGGPLANT

Visualizações: 883

Authors

  • Cássio de Castro Seron Universidade Estadual de Maringá - Maringá - Paraná.
  • Roberto Rezende Universidade Estadual de Maringá - Maringá - Paraná.
  • Marcelo Zolin Lorenzoni Instituto Federal Goiano - IFgoiano - Campus Posse - Posse - Goiás.
  • Álvaro Henrique Candido de Souza Universidade Estadual de Maringá - Maringá - Paraná.
  • Antonio Carlos Andrade Gonçalves Universidade Estadual de Maringá - Maringá - Paraná.
  • Reni Saath Universidade Estadual de Maringá - Maringá - Paraná.

DOI:

https://doi.org/10.32404/rean.v6i4.3809

Abstract

The work aimed to evaluate the effect of irrigation with magnetically treated water on development, growth, and yield of the scarlet eggplant (Solanum gilo Raddi) cv. Morro Grande, in two growing seasons (autumn and spring). A completely randomized design in a 3x2 factorial scheme with three replications for the first growing season and 2x2 with five replications for the second growing season was used. Each experimental unit consisted of four plants spaced 0.75 m between plants and 1.00 m between rows. Factors consisted of irrigation using magnetically treated water, untreated water, three replacement of the crop evapotranspiration (50%, 75%, and 100% ETc) for the first growing season and two replacement of the crop evapotranspiration (75% and 100% ETc) for the second growing season. Stem diameter (millimeters), plant height (centimeters), shoot dry matter (grams), first flower and fruit (accumulated degree-days), number of fruits, fruit yield per plant (grams), and average fruit mass (grams) were evaluated. The water with magnetic treatment provided better results for the development variables, first flower, and first fruit in the second growing season. However, for the variables, stem diameter, plant height, shoot dry matter, fruit yield, and number of fruits, only the replacement irrigation depth factor obtained higher values for the 100% ETc than water-deficit treatments.

References

(I) Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines for computng crop water requirements. FAO Irrigation and Drainage Paper 56, Rome.

(II) Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2013. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

(III) Ambachew, S., Alamirew, T., Melese, A., 2014. Performance of mungbean under deficit irrigation application in the semi-arid highlands of Ethiopia. Agricultural Water Management, 136, 68-74.

(IV) Bernardo, S., Mantovani, E.C., Silva, D.D., Soares, A.A., 2019. Manual de irrigação, nona ed. Viçosa, UFV.

(V) Carvalho, A.D.F., Amaro, G.B., Lopes, J.F., Vilela, N.J., Filho, M.M., Andrade, R., 2013. A cultura do pepino. Embrapa hortaliças, 18 (Circular Técnica 113).

(VI) Carvalho, J.A., Santana, M.J., Pereira, G.M., Pereira, J.R.D., Queiroz, T.M., 2004. Níveis de déficit hídrico em diferentes estádios fenológicos da cultura de berinjela (Solanum melongena L.). Revista Brasileira de Engenharia Agrícola, 24(2), 320-327.

(VII) Doorenbos, J., Kassam, A.M., 1994. Efeito da água no rendimento das culturas. Estudos FAO, Irrigação e Drenagem, 33. Campina Grande, UFPB.

(VIII) Embrapa. Sistema Brasileiro de Classificação de Solos, 2018. Centro Nacional de Pesquisa de Solos, quinta ed. Rio de Janeiro, Embrapa Solos.

(IX) Ferreira, D.F., 2014. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Revista Ciência e Agrotecnologia, 38(2), 109-112.

(X) Filgueira, F.A.R., 2013. Novo manual de oleiricultura: Agrotecnologia moderna na produção e comercialização de hortaliças, terceira ed. Viçosa, UFV.

(XI) Frizzone, J.A., Freitas, P.S.L., Rezende, R., Faria, M.A., 2012. Microirrigação: Gotejamento e Microaspersão, primeira ed. Maringá, Eduem.

(XII) Harari, M., Lin, I., 1989. Growing muskmelons with magnetically treated water. Water Irrigation Revieus, 9(1), 4-7.

(XIII) IBGE – Instituto Brasileiro de Geografia e Estatística, 2017. Censo agropecuário. Rio de Janeiro, IBGE.

(XIV) Kataria, S., Baghel, L., Guruprasad, K.N., 2015. Acceleration of germination and early growth characteristics of soybean and maize after pretreatment of seeds with static magnetic field. International Journal of Tropical Agriculture, 33(2), 985-992.

(XV) Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi1, S.F., Kiani, A.R., 2011. Effects of magnetized water on the distribution pattern of soil water with respect to time intrickle irrigation. Soil Use and Management, 27, 515-522.

(XVI) Mahmoods, S., Usman, M., 2014. Consequences of magnetized water application maize seed emergence in sand culture. Journal of Agricultural Science and Technology, 16, 47-55.

(XVII) Marouelli, W.A., Silva, W.L.C., Silva H.R., 2001. Irrigação por aspersão em hortaliças: qualidade da água, aspectos do sistema e método prático de manejo. Brasília, Embrapa.

(XVIII) Mendonça, R.M., Garcia, C.C., Aguiar, J.A., 2008. Uso de água imantada no cultivo de alface em sistema hidropônico NFT. FAZU em Revista, 5, 30-33.

(XIX) Morgado, H.S., Dias, M.J.V., 1992. Caracterização da coleção de germoplasma de jiló no CNPH/Embrapa. Horticultura Brasileira, 10(2), 86-88.

(XX) Nimmi, V., Madhu, G., 2009. Effect of pre-sowing treatment with permanent magnetic field on germination and growth of chilli (Capsicum annum L.). International Agrophysics, 23(2), 195-198.

(XXI) Novo, M.C.S.S., Trani, P.E., Rolim, G.S., Bernacci, L.C., 2008. Desempenho de cultivares de jiló em casa de vegetação. Bragantia, 67(3), 693-700.

(XXII) Ospina-Salazar, D.I., Benavides-Bolaños, J.A., Zúñiga-Escobar, O., Muñoz-Perea, C.G., 2018. Photosynthesis and biomass yield in tabasco pepper, radish and maize subjected to magnetically treatd water. Corpoica Ciencia Tcnologia Agropecuária, 19(2), 307-321.

(XXIII) Pinheiro, J.B., Pereira, R.B., Freitas, R.A., Melo, R.A.C., 2015. A cultura do jiló. Empresa Brasileira de Pesquisa Agropecurária, Embrapa Hortaliças.

(XXIV) Prohens, J., Nuez, F., 2008. Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Handbook of plant breeding, 2, Springer.

(XXV) Surendran, U., Sandeep, O., Joseph, E.J., 2016. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Manegement, 178, 21-29.

(XXVI) Taiz, L., Zeiger, E., Moller, I., Murphy, A., 2017. Fisiologia e desenvolvimento vegetal, sexta ed. Porto Alegre, Artmed.

(XXVII) Trani, P.E., 2014. Calagem e adubação para hortaliças sob cultivo protegido. Instituto Agronômico de Campinas, Campinas, 25 p.

(XXVIII) Villa Nova, N.A., Pedro Júnior, M.J., Pereira, A.R., Ometto, J.C., 1972. Estimativa de graus-dias acima de qualquer temperatura base, em função das temperaturas máxima e mínima. Caderno de Ciências da Terra, 30, 1-8.

Downloads

Published

2019-12-19

How to Cite

Seron, C. de C., Rezende, R., Lorenzoni, M. Z., Souza, Álvaro H. C. de, Gonçalves, A. C. A., & Saath, R. (2019). IRRIGATION WITH WATER DEFICIT APPLYING MAGNETIC WATER ON SCARLET EGGPLANT. REVISTA DE AGRICULTURA NEOTROPICAL, 6(4), 21–28. https://doi.org/10.32404/rean.v6i4.3809

Most read articles by the same author(s)