PIGEON PEA INITIAL GROWTH UNDER DIFFERENT CONCENTRATIONS OF ALUMINUM AND COMMERCIAL SUBSTRATE

Visualizações: 588

Authors

DOI:

https://doi.org/10.32404/rean.v7i4.5046

Abstract

The incorporation of organic substrate into the soil can reduce aluminum toxicity in pigeon pea (Cajanus cajan (L.) Millsp.) plants, making it a viable alternative for use by small farmers in acidic soil regions such as the northeast semi-arid regions of Brazil that contain toxic aluminum in the soil. The aim of this study was to evaluate the effect of increasing aluminum doses and different commercial substrate concentrations on the initial growth of the pigeon pea. The experiment was undertaken in a greenhouse using a completely randomized design with a 5 × 3 factorial scheme. The first factor consisted of five doses of aluminum (0, 13.5, 27, 54, and 108 mg L-1) and the second factor consisted of three percentages of commercial substrate Vivato Slim Pro® (0%, 10%, and 20%), with five replicates per treatment, totaling 60 experimental units. The variables evaluated were plant height; total chlorophyll; shoot, root, and total dry matter; and root volume. The use of the commercial substrate attenuated the aluminum toxicity and favored the initial growth of pigeon pea plants, regardless of the concentration used. Thus, the aluminum was detrimental to the initial plant growth at all tested concentrations and showed more pronounced signs of toxicity on the root volume.

References

(I) Azevedo, R.L., Carvalho, C.A.L., Marques, O.M., 2008. Insetos associados à cultura do feijão guandu na região do Recôncavo da Bahia, Brasil. Revista Caatinga, 21(4), 83-88.

(II) Azevedo, R.L., Ribeiro, G.T., Azevedo, C.L.L., 2007. Feijão guandu: uma planta multiuso. Revista da Fapese, 3(2), 81-86.

(III) Bhalerao, S.A., Prabhu, D.V., 2013. Aluminium toxicity in plants: a review. Journal of Applicable Chemistry, 2(3), 447-474.

(IV) Choudhary, A.K., Singh, D., 2011. Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity. Physiology and Molecular Biology of Plants, 17(2), 145-152. DOI: https://doi.org/10.1111/j.1439-0523.2010.01833.x.

(V) Ebeling, A.G., Anjos, L.H.C., Perez, D.V., Pereira, M.G., Valladares, G.S., 2008. Relação entre acidez e outros atributos químicos em solos com teores elevados de matéria orgânica. Bragantia, 67(2), 429-439. DOI: http://dx.doi.org/10.1590/S0006-87052008000200019.

(VI) FAOSTAT, 2018. Food and Agricultural commodities production. http://www.fao.org/faostat/en/#data/QC (acessado em 20 de abril de 2020).

(VII) Farias, L.N., Bonfim-Silva, E.M., Pietro-Souza, W., Vilarinho, M.K.C., Silva, T.J.A., Guimarães, S.L., 2013. Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(5), 497-503. DOI: http://dx.doi.org/10.1590/S1415-43662013000500005.

(VIII) Franchini, J.C., Gonzalez-Vila, F.J., Cabrera, F., Miyazawa, M., Pavan, M.A., 2001. Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid Oxisol. Plant and Soil, 231(1), 55-63. DOI: https://doi.org/10.1023/A:1010338917775.

(IX) Haridasan, M., 2008. Nutritional adaptations of native plants of the cerrado biome in acid soils. Brazilian Journal of Plant Physiology, 20(3), 183-195. DOI: http://dx.doi.org/10.1590/S1677-04202008000300003.

(X) Haynes, R.J., Mokolobate, M.S., 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59(1), 47-63. DOI: https://doi.org/10.1023/A:1009823600950.

(XI) Hoagland, D.R., Arnon, D. I., 1950. The water-culture method for growing plants without soils. California Agricultural Experiment Station (Circular 347).

(XII) Jesus, D.S., Martins, F.M., Azevedo Neto, A.D., 2016. Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower. Pesquisa Agropecuária Tropical, 46(4), 383-390. DOI: https://doi.org/10.1590/1983-40632016v4641426.

(XIII) Kochian, L.V., Piñeros, M.A., Liu, J., Magalhaes, J.V., 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66(1), 571-598. DOI: https://doi.org/10.1146/annurev-arplant-043014-114822.

(XIV) Konrad, M.L.F., Silva, J.A.B., Furlani, P.R., Machado, E.C., 2005. Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio. Bragantia, 64(3), 339-347. DOI: https://doi.org/10.1590/S0006-87052005000300004.

(XV) Kopittke, P.M., Moore, K.L., Lombi, E., Gianoncelli, A., Ferguson, B.J., Blamey, F.P.C., Menzies, N.W., Nicholson, T.M., Mckenna, B.A., Wang, P., Gresshoff, P.M., Kourousias, G., Webb, R.I., Green, K., Tollenaere, A., 2015. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiology, 167(4), 1402-1411. DOI: https://doi.org/10.1104/pp.114.253229.

(XVI) Marin, A., Santos, D.M.M., Banzatto, D.A., Ferraudo, A.S., 2004. Germinação de sementes de guandu sob efeito da disponibilidade hídrica e de doses subletais de alumínio. Bragantia, 63(1), 13-24. DOI: https://doi.org/10.1590/S0006-87052004000100002.

(XVII) Pavinato, P.S., Rosolem, C.A., 2008. Disponibilidade de nutrientes no solo: decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo, 32(3), 911-920. DOI: https://doi.org/10.1590/S0100-06832008000300001.

(XVIII) Pereira, L.B., Tabaldi, L.A., Gonçalves, J.F., Jucoski, G.O., Pauletto, M.M., Weis, S.N., Nicoloso, F.T., Borher, D., Rocha, J.B.T., Schetinger, M.R.C., 2006. Effect of aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus). Environmental and Experimental Botany, 57(1-2), 106-115. DOI: https://doi.org/10.1016/j.envexpbot.2005.05.004.

(XIX) Rahman, M.A., Lee, S.H., Ji, H.C., Kabir, A.H., Jones, C.S., Lee, K.W., 2018. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: current status and opportunities. International Journal of Molecular Sciences, 19(10), 1-28. DOI: https://doi.org/10.3390/ijms19103073.

(XX) R Core Team, 2015. R: A language and environment for statistical computing. https://www.R-project.org/ (acessado em 05 de março de 2020).

(XXI) Santos, C.A.F., Araújo, F.P., Menezes, E.A., 2000. Avaliação de genótipos de guandu de diferentes ciclos e portes no sertão pernambucano. Magistra, 12(1), 31-40.

(XXII) Singh, D., Raje, R.S., Choudhary, A.K., 2011. Genetic control of aluminium tolerance in pigeonpea (Cajanus cajan L.). Crop and Pasture Science, 62(9), 761-764. DOI: https://doi.org/10.1071/CP11106.

(XXIII) Spehar, C.R., Souza, L.A.C., 2006. Selection for aluminum tolerance in tropical soybeans. Pesquisa Agropecuária Tropical, 36(1), 1-6.

(XXIV) Sri, N.D., Mohan, M.M., Mahesh, K., Raghu, K., Rao, S.S.R., 2016. Amelioration of aluminium toxicity in pigeon pea [Cajanus cajan (L.) Millsp.] plant by 24-epibrassinolide. American Journal of Plant Sciences, 7(12), 1618-1628. DOI: https://doi.org/10.4236/ajps.2016.712153.

Downloads

Published

2020-11-30

How to Cite

Rodrigues, G. A., Pereira, B. de J., Santos, A. R. dos, Costa, F. M., & Anjos, G. L. dos. (2020). PIGEON PEA INITIAL GROWTH UNDER DIFFERENT CONCENTRATIONS OF ALUMINUM AND COMMERCIAL SUBSTRATE. REVISTA DE AGRICULTURA NEOTROPICAL, 7(4), 1–6. https://doi.org/10.32404/rean.v7i4.5046