Visualizações: 685


  • Fereshteh Maknali Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • Abdolkarim Kashi Department of Horticultural Science, Faculty of Agricultural Science and Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77781, Iran.
  • Reza Salehi Mohammadi Department of Horticultural Science, Faculty of Agricultural Science and Engineering, Campus of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77781, Iran.
  • Ahmad Khalighi Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.




Effects of casing soil enrichment with soybean flour (SF) and iron (Fe) were explored on yield and quality of edible mushrooms inoculated with plant growth-promoting bacteria in a factorial experiment with four replications. Fe from Fe chelate source was applied at two levels of 0 (Fe0) and 500 mg L-1 (Fe500), SF at three levels of 0% (SF0), 1.5% (SF1.5), and 3% (SF3) of compost dry weight, and bacteria inoculation at two levels (non-inoculation and inoculation of mycelia with P. putida). The maximum fresh yield (20.3 kg m-2), mushroom number (1041), biological efficiency (95.0%), vitamin C (3.74 mg 100 g-1 FW), and yield of protein (6.48 kg m-2) were obtained from SF1.5P. putida. But, the maximum tryptophan (1.37 mg g-1 DW), methionine (2.29 mg g-1 DW), and antioxidant capacity (4.25 mg mL-1) were related to SF3 inoculated with P. putida. Furthermore, the maximum carbohydrate (5.64%) was related to Fe500 + SF3. Based on the results, casing soil enrichment with Fe did not have a significant influence on quantitative and qualitative traits of mushrooms, but SF application at the rate of 1.5%, especially when accompanied by P. putida, played a more essential role. Thus, it is recommended to use 1.5% SF along with P. putida to enhance the yield and qualitative traits of edible mushrooms.


(I) Bonatti, M., Karnopp, P., Soares, H.M., Furlan, S.A. 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry, 88(3), 425-428. https://doi.org/10.1016/j.foodchem.2004.01.050

(II) Bosch, L.A. Alegrı´a, R. Farre´. 2006. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatogr, B 831(2), 176–183. https://doi.org/10.1016/j.jchromb.2005.12.002

(III) Carrasco, J., Tello, M.L., De Toro, M., Tkacz, A., Poole, P., Pérez-Clavijo, M., Preston, G. 2019. Casing microbiome dynamics during button mushroom cultivation: implications for dry and wet bubble diseases. Microbiology, 165(6), 611-624. https://doi.org/10.1099/mic.0.000792

(IV) Carrasco, J., Zied, D.C., Pardo, J.E., Preston, G.M., Pardo-Giménez, A. 2018. Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8(1), 1-9. https://doi.org/10.1186/s13568-018-0678-0

(V) Chang, S.T., Wasser, S.P. 2017. The cultivation and environmental impact of mushrooms. In Oxford Research Encyclopedia of Environmental Science, 42(1), 23-37. https://doi.org/10.1093/acrefore/9780199389414.013.231

(VI) Chen S., Qiu C., Huang T., Zhou W., Qi Y., Gao Y., Shen J., Qiu L. 2013. Effect of 1-aminocyclopropane-1- carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecology, 6(1), 110-118. https://doi.org/10.1016/j.funeco.2012.08.003

(VII) Chen, Y., Chefetz, B., Rosario, R., Van Heemst, J.D.H., Romaine, C. P., Hatcher, P. G. 2000. Chemical nature and composition of compost during mushroom growth. Compost Science and Utilization, 8(4), 347-359. https://doi.org/10.1080/1065657X.2000.10702008

(VIII) Colak, M., Baysal, E., Simsek, H., Toker, H., Yilmaz, F. 2007. Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based composts and locally available casing materials part II: Dry matter, protein and carbohydrate contents of Agaricus bisporus. African Journal of Biotechnology, 6(24), 2855-2859. https://www.ajol.info/index.php/ajb/article/download/58238/46599. (accessed March 17, 2021)

(IX) Colauto, N.B., Fermor, T.R., Eira, A.F., Linde, G.A. 2016. Pseudomonas putida Stimulates Primordia on Agaricus bitorquis. Current Microbiology, 72(4), 482-488. https://doi.org/10.1007/s00284-015-0982-8

(X) Delphina, P.M. Royse, D.J. 2016. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresource Technology, 99(8), 3205-3212. https://doi.org/10.1016/j.biortech.2007.05.073

(XI) Desrumaux, B., Calus, A., Sedeyn, P. 2000. Minerals and microelements in the mushroom substrate: A production-limiting factor? Science Cultivation of Edible Fungi, 15(1), 327–334. http://www.fungifun.org/docs/mushrooms/scef2000/scef327. (accessed March 17, 2021)

(XII) Ebadi A., Alikhani H.A., Rashtbari M. 2012. Effect of plant growth promoting bacteria (PGPR) on the morpho-physiological properties of button mushroom Agaricus bisporus in two different culturing beds.International Research Journal of Basic and Applied Sciences, 3(2), 203-212.

(XIII) Golestani, T., Hamidoghli, Y., Olfati, J.A. 2014. Substrate, Casing Supplementation and Fragmentation have no Effect on Button Mushroom Yield under Appropriate Conditions. Indian Horticulture Journal, 4 (3 and 4), 162-166.‏ https://doi.org/10.1002/jsfa.5529

(XIV) Gülser, C., Pekşen, A. 2003. Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresource Technology, 88(2), 153-156. https://doi.org/10.1016/S0960-8524(02)00279-1

(XV) Han J, 1999. The influence of photosynthetic bacteria treatments on the crop yield, dry matter content, and protein content of the mushroom Agaricus bisporus. Science Horticulture. 82(1), 171-178. https://doi.org/10.1016/S0304-4238(99)00043-6

(XVI) Jiang, T., Zheng, X., Li, J., Ying, T. 2011. Integrated application of nitric oxide and MAP to improve quality retention of button mushroom (Agaricus bisporus). Food chemistry, 126 (4), 1693-1699. https://doi.org/10.1016/j.foodchem.2010.12.060

(XVII) Jurak, E., Kabel, M.A., Gruppen, H. 2014. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Carbohydrate polymers, 101(1), 281–288. https://doi.org/10.1016/j.carbpol.2013.09.050

(XVIII) Kertesz, M.A., Thai, M. 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied microbiology and biotechnology, 102(4), 1639-1650. https://doi.org/10.1007/s00253-018-8777-z

(XIX) Kim, M.K., Math, R.K., Cho, K.M., Shin, K.J., Kim, J.O., Ryu, J.S., Lee, Y.H., and Yun, H.D. 2008. Effect of pseudomonas sp.p7014 on the growth of edible mushroom pleurotus eryngii in bottle culture for commercial production. Bioresource Technology, 99 (1), 3306-3308. https://doi.org/10.1016/j.biortech.2007.06.039

(XX) Kirbag, S., Akyuz M, 2009. Evaluation of agricultural wastes for the cultivation of Pleurotus eryngii (DC. ex Fr.) Quel. var. ferulae Lanzi. African Journal of Biotechnology. 7 (20): 3660-3664.

(XXI) Klein, B.P., Perry, A.K. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. Journal of Food Science, 47(2), 941–948. https://doi.org/10.1111/j.1365-2621.1982.tb12750.x

(XXII) Kumar, V., Goala, M., Kumar, P., Singh, J., Kumar, P., Kumari, S. 2020. Integration of treated agro-based wastewaters (TAWs) management with mushroom cultivation. Environmental Degradation: Causes and Remediation Strategies, 6(1), 63-75.

(XXIII) Mamiro, D.P., Royse, D.J. 2008 The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresource Technology, 99, 3205-3212. https://doi.org/10.1016/j.biortech.2007.05.073

(XIV) Mascarin, G.M., Kobori, N.N., Jackson, M.A., Dunlap, C.A., Delalibera Jr, Í. 2018. Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores. Journal of applied microbiology, 124(3), 810-820. https://doi.org/10.1111/jam.13694

(XV) Mishra, K.K., Pal, R.S., Arunkumar, R., Chandrashekara, C., Jain, S.K., Bhatt, J.C. (2013). Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food Chemistry, 138(2-3), 1557-1563.‏ https://doi.org/10.1016/j.foodchem.2012.12.001

(XVI) Mohammad A.O., Sabaa A.E. 2013. Impact of some Pseudomonas spp. isolated from casing soil on the hyphal growth of Agaricus bisporus. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine, 4 (1), 45-48.

(XVII) Nurudeen, T.A., Ekpo, E.N., Olasupo, O.O., Okunrotifa, A.O. Haastrup, N.O. 2014. Effect of Supplements on the Yield and Nutritional Composition of Oyster Mushroom (Pleurotus sajorcaju) Cultivated on Sawdust Forestry. Journal of Environmental Science, 3(4), 1242-1251.

(XVIII) Pardo-Giménez, A., Carrasco, J., Roncero, J.M., Álvarez-Ortí, M., Zied, D.C., Pardo-González, J.E., 2018. Recycling of the biomass waste defatted almond meal as a novel nutritional supplementation for cultivated edible mushrooms. Acta Scientiarum, Agronomy, 40(1), 34-39. https://doi.org/10.4025/actasciagron.v40i1.39341

(XXIX) Prathap, M., Ranjitha Kumari, B.D., 2015. A critical review on plant growth promoting rhizobacteria. Journal of Plant Pathology and Microbiology, 6(4), 1-4.‏ http://www.omicsonline.org/open-acces. (accessed March 17, 2021)

(XXX) Pratiksha, K., Narute, T.K., Surabhi, S., Ganesh, A., Sujoy, S. 2017. Effect of liquid biofertilizers on the yield of button mushroom. Journal of Mycopathological Research, 55(2), 135-141.

(XXXI) Remezan, D., B.A. Siahsar. 2010. Assessing the impact of casing soil on some quantitative and qualitative characteristics of button mushroom (Agaricus bisporus L.). Iranian Journal of Hortcultural Science, 41(3), 393-393 (In Persian). https://dx.doi.org/10.22067/jhorts4.v31i4.62979

(XXXII) Roca, A., Pizarro-Tobías, P., Udaondo, Z., Fernández, M., Matilla, M.A., Molina-Henares, M.A., Molina, L., Segura, A., Duque, A., Ramos, J.L. 2013. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD1. Environmental Microbiology, 15(4):780–794. https://doi.org/10.1111/1462-2920.12037

(XXXIII) Roise, L., Pont, S., Baptista , P., Freire, C., Vilas-Boas, M. Ferreira, I.C.F.R. 2016. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111(1), 61-66. https://doi.org/10.3389/fchem.2017.00095

(XXXIV) Sanchez-Moreno, C., Larrauri, J., Saura-Calixto, F. 1998.

A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76(2), 270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9

(XXXV) Schisler, L.C., 1967. Stimulation of yield in the cultivated mushroom by vegetable oils. American Society for Microbiology, 15(4), 844-850. https://aem.asm.org/content/aem/15/4/844.full.pdf. (accessed March 17, 2020)

(XXXV) Sing, R.N., Jain, V.B., 2016. Nutrient supplementation for good yield of button mushroom. Indian Phytopathology, 35(4), 535-536.

(XXXVI) Singh, M., Singh, R.P., Chaube, H.S., van Griensven, L.J.L.D., 2000. Siderophore producing bacteria as potential biocontrol agents of mushroom diseases. Mushroom Science, 15(2), 577-585.

(XVII) Siyoum, N.A., Surridge, K., van der Linde E.J., and Korsten, L., 2015. Microbial succession in white button mushroom production systems from compost and casing to a marketable packed product. Annals of Microbiology, 66(1): 151-164. https://doi.org/10.1007/s13213-015-1091-4

(XXXVIII) Spaulding, T., Beelman, R., 2003. Survey evaluation of selenium & other minerals in Agarcus mushrooms commercially grown in the United States. Mushroom news, 51(1), 6-9.

(XXXIX) Vieira, F.R., Pecchia, J.A., 2018. An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting phase II) for Agaricus bisporus cultivation. Microbial ecology, 75(2), 318-330. https://doi.org/10.1007/s00248-017-1026-7

(XL) Vieyra, F.E, Palazzi, V.I, Pinto, M.S., Borsarelli C.D. 2009, Combined UV–Vis absorbance and fluorescence properties of extracted humic substances-like for characterization of composting evolution of domestic solid wastes. Geoderma, 151(1), 61–67. https://doi.org/10.1016/j.geoderma.2009.03.006

(XLI) Wang, D., Sakoda, A., Suzuki, M. 2000. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent Beer grain. Bioresouree Technology, 78 (2), 293-300. https://doi.org/10.1186/s13568-016-0304-y

(XLII) Weil, D., Beelman, R., Beyer, D. 2006. Manganese and other micronutrient additions to improve yield of Agaricus bisporus. Bioresource Technology, 97(8), 1012–1017. https://doi.org/10.1016/j.biortech.2005.04.042

(XLIII) Zarenejad, F., Yakhchali, B., Rasooli, I. 2012. Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology, 28(1), 99- 104. https://doi.org/10.1007/s11274-011-0796-1

(XLIV) Zied, D.C., Savoie, J.M., Pardo-Giménez, A., 2011. Soybean the main nitrogen n source in cultivation substrates of edible and medicinal mushrooms. Soybean and nutrition, 22(2), 433-452. https://doi. org/10.5772/17692




How to Cite

Maknali, F., Kashi, A., Salehi Mohammadi, R., & Khalighi, A. (2021). ENRICHMENT OF CASING SOIL WITH FE AND SOY-FLOUR UNDER Pseudomonas INOCULATION ON YIELD AND QUALITY OF BUTTON MUSHROOM. REVISTA DE AGRICULTURA NEOTROPICAL, 8(2), e5111. https://doi.org/10.32404/rean.v8i2.5111