COMPATIBILITY OF AZOXYSTROBIN AND CYPROCONAZOLE ON PLANT GROWTH-PROMOTING MICROORGANISMS

Visualizações: 750

Authors

DOI:

https://doi.org/10.32404/rean.v7i4.5281

Abstract

Avoiding the toxicity effect of chemical fungicides on rhizobacteria is a sustainable alternative for agroecosystem management. Rhizobacteria, whose bioprotective and plant growth-promoter potential have been reported in the literature, lack studies on their performance in integrated management with pesticides. Thus, this study aimed to evaluate the effects of azoxystrobin + cyproconazole on the growth of Bacillus subtilis, Streptomyces seoulensis, and Bradyrhizobium japonicum. Three independent experiments were set up, i.e., one for each microorganism, and carried out in a completely randomized design in a factorial scheme (3 × 6), with three doses (recommended by the manufacturer, half, and twice) and six periods of evaluations (48, 96, 144, 192, 240, and 288 hours), with three replications. Growth inhibition rings were evaluated. Azoxystrobin + cyproconazole at all tested doses is compatible with B. subtilis. The use of azoxystrobin + cyproconazole affected the growth of B. japonicum and S. seoulensis, which were sensitive to all its doses until 288 hours after inoculation.

Author Biographies

Weslany Silva Rocha, Universidade Federal do Tocantins, Campus Palmas, Palmas, Tocantins.

Doutora em Produção Vegetal e técnica de laboratório de Fitoterapia da Universidade Federal do Tocantins, campus de Palmas -TO.

Mara Caroline Alves da Silva, Universidade Federal do Tocantins, Campus Gurupi, Gurupi, Tocantins.

Engenheira Agrônoma.

Gilberto Coutinho Machado Filho, Universidade Federal do Tocantins, Campus Gurupi, Gurupi, Tocantins.

Doutorando no Programa de Pós-graduação em Produção Vegetal - UFT.

Mauro Gomes dos Santos, Universidade Federal do Tocantins, Campus Gurupi, Gurupi, Tocantins.

Doutorando no Programa de Pós-graduação em Produção Vegetal - UFT.

Aloísio Freitas Chagas Júnior, Universidade Federal do Tocantins, Campus Gurupi, Gurupi, Tocantins.

Professor doutor do curso de Agronomia e do curso de mestrado e doutorado no Programa de Pós-graduação em Produção Vegetal - UFT.

Manoel Mota dos Santos, Universidade Federal do Tocantins, Campus Gurupi, Gurupi, Tocantins.

Professor doutor do curso de Agronomia e do curso de mestrado e doutorado no Programa de Pós-graduação em Produção Vegetal - UFT.

References

(I) AGROFIT – Sistema de agrotóxicos fitossanitários, 2019. Consulta de Produtos Formulados. Ministério da Agricultura, Pecuária e Abastecimento - Coordenação-Geral de Agrotóxicos e Afins/DFIA/SDA. http://agrofit.agricultura.gov.br/agrofit_cons/!ap_produto_form_detalhe_cons?p_id_produto_formulado_tecnico=7840&p_tipo_janela=NEW (acessado 14 de julho de 2020).

(II) Anand, T., Prakasam, V., Chandrasekaran, A., Samiyappan, R., Karthikeyan, G., Saravanan, A., 2007. Compatibility of azoxystrobin (Amistar 25 SC) with biocontrol agents. Pestology, 31(5), 21-24.

(III) Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M., 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.

(IV) Blencke, H., Homuth, G., Ludwig, H., Mader, U., Hecker, M., Stulke, J., 2003. Transcriptional profiling of gene expression IN response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic Engineering, 5(2), 462-468. DOI: 10.1016/s1096-7176(03)00009-0.

(V) Campo, R.J., Araujo, R.S., Hungria, M., 2009. Nitrogen fixation with the soybean crop in Brazil: compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis, 48(1), 154-163. DOI: 10.1007/BF03179994.

(VI) Constantinescu, F., Sicuia, O-A., Fatu, C., Dinu, M.M., Andrei, A-M., Mincea, C., 2014. In vitro compatibility between chemical and biological products used for seed treatment. Scientific Papers. Series A. Agronomy, 57(1), 146-151.

(VII) Ferreira, D.F., 2019. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: 10.28951/rbb.v37i4.450.

(VIII) FRAC-Brasil, 2020. Comitê de Ação a Resistência a Fungicidas. Modo de Ação de Fungicidas. http://www.frac-br.org/modo-de-acao (acessado 08 de julho de 2020).

(IX) Franche, C., Lindström, K., Elmerich, C., 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1-2), 35-59. DOI: 10.1007 / s11104-008-9833-8.

(X) Halfeld-Vieira, B.A., Santos, M.S., 2018. Compatibilidade entre ativos biológicos bacterianos e agroquímicos utilizados na produção de mudas de cana-de-açúcar. Jaguariúna, Embrapa Meio Ambiente, 27 p. (Boletim de Pesquisa e Desenvolvimento, 77).

(XI) Hao, D., Gao, P., Liu, P., Zhao, J., Wang, Y., Yang, W., Lu, Y., Shi, T., Zhang, X., 2011. AC3-33, a new secretory protein, inhibits the transcriptional activity of Elk1 via ERK. Molecular Biology Reports, 38(1), 1375-1382. DOI: 10.1007/s11033-010-0240-x.

(XII) Manjula, K., Podile, A.R., 2005. Increase in seedling emergence and dry weight of pigeon pea in the field with chitin-supplemented formulations of Bacillus subtilis AF 1. World Journal of Microbiology & Biotechnology, 21(6), 1057-1062. DOI: 10.1007/s11274-004-8148-z.

(XIII) Marks, B.B., Bangel, E.V., Tedesco, V., Silva, S.L.C., Ferreira, S.B., Vargas, R., Silva, G.M., 2013. Avaliação da sobrevivência de Bradyrhizobium spp em sementes de soja tratadas com fungicidas, protetor celular e inoculante. Revista Internacional de Ciências, 3(1), 43-51. DOI: 10.12957/ric.2013.7063.

(XIV) Mohiddin, F.A., Khan, M.R., 2013. Tolerance of fungal and bacterial biocontrol agents to six pesticides commonly used in the control of soil borne plant pathogens. African Journal of Agricultural Research, 8(43), 5331-5334. DOI: 10.5897/AJAR11.677.

(XV) Palazzini, J.M., Torres, A.M., Chulze, S.N., 2018. Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina. Letters in Applied Microbiology, 66(5), 434- 438. DOI: 10.1111/lam.12869.

(XVI) Panhwar, Q.A., Othman, R., Rahman, Z.A., Meon, S., Ismail, M.R., 2012. Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. African Journal of Biotechnology, 11(11), 2711-2719. DOI: 10.5897/AJB10.2218.

(XVII) Pereira, C.E., Oliveira, J.A., Caldeira, C.M., Botelho, F.J.E., 2010. Efeito do tratamento das sementes de soja com fungicidas e período de armazenamento na resposta da planta inoculada com Bradyrhizobium. Revista Agro@mbiente, 4(2), 62-66. DOI: 10.18227/1982-8470ragro.v4i2.362.

(XVIII) Qiao, J-Q., Wu, H-J., Huo, R., Gao, X-W, Borriss, R., 2014. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chemical and Biological Technologies in Agriculture, 1(12), 1-14. DOI: 10.1186/s40538-014-0012-2.

(XIX) Rossi-Zalaf, L.S., Alves, S.B., Lopes, R.B., Silveira Neto, S., Tanzini, M.R., 2008. Interação de micro-organismo com outros agentes de controle de pragas e doenças, in: Alves, S.B., Lopes, R.B., (Ed.). Controle microbiano de pragas na América Latina: avanços e desafios. FEALQ, Piracicaba, p. 279-302.

(XX) Saharan, B.S., Nehra, V., 2011. Plant Growth Promoting Rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1-30.

(XXI) Santos, M.M., Rocha, W.S., Silva Júnior, F.R., Chagas Júnior, A.F., Lopes, R.R., 2018. Compatibilidade de tratamentos de sementes e rizóbio, in vitro e em casa de vegetação, no feijão-caupi. Revista Tecnologia & Ciência Agropecuária, 12(1), 15-21.

(XXII) Sendhilvel, V., Marimuthu, T., Raguchander, T., 2004. Compatibility of azoxystrobin 25 SC with biocontrol agents. Pestology, 28(10), 61-64.

(XXIII) Silva, E.R.L., Alves, L.F.A., Sene, L., Santos, J., Bonini, A.K., Potrich, M., Neves, P.M.O.J., 2006. Técnicas para avaliação do efeito “in vitro” de fungicidas sobre Bacillus thuringiensis var. Kurstaki. Arquivos do Instituto Biológico, 73(4), 429-437.

(XXIV) Sousa, J.A.J., Olivares, F.L., 2016. Plant growth promotion by Streptomycetes: ecophysiology, mechanisms and applications. Chemical Biological Technologies Agriculture, 3(24). DOI: 10.1186/s40538-016-0073-5.

(XXV) Souza, R., Ambrosini, A., Passaglia, L.M.P., 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401-419. DOI: 10.1590/S1415-475738420150053.

(XXVI) Valarmathi, P., Pareek, S.K., Priya, V., Rabindran, R., Chandrasekar, G., 2013. Compatibility of Copper hydroxide (Kocide 3000) with biocontrol agents. IOSR Journal of Agriculture and Veterinary Science, 3(6), 28-31.

Downloads

Published

2020-11-30

How to Cite

Rocha, W. S., Silva, M. C. A. da, Machado Filho, G. C., dos Santos, M. G., Chagas Júnior, A. F., & Santos, M. M. dos. (2020). COMPATIBILITY OF AZOXYSTROBIN AND CYPROCONAZOLE ON PLANT GROWTH-PROMOTING MICROORGANISMS. REVISTA DE AGRICULTURA NEOTROPICAL, 7(4), 95–100. https://doi.org/10.32404/rean.v7i4.5281

Most read articles by the same author(s)