COMBINATION OF Azospirillum brasilense AND Bradyrhizobium japonicum IN THE PROMOTION OF INITIAL CORN GROWTH

Visualizações: 780

Authors

  • Gabriel Monteiro Aguiar Pereira Centro Universitário de Goiás, UNIGOIÁS, Goiânia/GO.
  • Renato de Carvalho Menezes Universidade Federal de Goiás, UFG, Campus Samambaia, Goiânia/GO.
  • Marcos Gomes da Cunha Universidade Federal de Goiás, UFG, Campus Samambaia, Goiânia/GO.
  • Renato Carrer Filho Universidade Federal de Goiás, UFG, Campus Samambaia, Goiânia/GO.

DOI:

https://doi.org/10.32404/rean.v8i1.5360

Abstract

Biological formulations used as inoculants are increasingly present in grasses, especially in corn. Positive results in promoting plant growth, with different associations with diazotrophic bacteria, show these capacities of interaction to act as plant growth regulators, making it a promising alternative with a low environmental impact. Thus, this study aimed to evaluate the efficiency of inoculation and co-inoculation of nodulating and non-nodulating diazotrophic bacteria as promoters of initial growth in corn plants. Therefore, the bacteria Azospirillum brasilense (UFG21 strain), Bradyrhizobium japonicum (commercial product), and their co-inoculation were used in seed treatment. The evaluations consisted of growth measuring of the root system and shoot and evaluating leaf chlorophyll concentration. The results showed a beneficial interaction between the bacteria and the corn plant, with an increase in the root system and chlorophyll content, compared to the control treatment.

References

(I) Barassi, C.A., Sueldo, R.J., Creus, C.M., Carrozzi, L.E., Casanovas, W.M., Pereyra, M.A. 2008. Potencialidad de Azospirillum en optimizer el crecimiento vegetal bajo condiciones adversas. In: Cassan, F.D., Garcia de Salamone, I. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, p. 49-59.

(II) Bashan, Y., Bustillos, J.J., Leyva, L.A., Hernandez, J.P., Bacilio, M. 2006. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils, 42, 279-285. DOI: 10.1007/s00374-005-0025-x.

(III) Carrer Filho, R., Dianese, E.C., Cunha, M.G. 2015. Supressão da murcha de fusário em tomateiro por rizobactérias do gênero Bacillus. Pesquisa Agropecuária Tropical, 45(3), 356-363. DOI: 10.1590/1983-40632015v4535397.

(IV) Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Luna, V. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45(1), 28-35. DOI: 10.1016/j.ejsobi.2008.08.005.

(V) Czarnes, S., Marcier, P.E., Lemoine, D.G., Hamzaoui, J., Legendre, L. 2020. Impact of soil water content on maize responses to the plant growth‐promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of Agronomy and Crop Science, 206(5), 505-516. DOI: https//doi.org/10.111/jac.12399.

(VI) Dardanelli, M.S., Cordoba, F.J.F, Espuny, M.R., Rodriguez carvajal, M.A., Soria Diaz, M.E., Serrano, A.M.G., Okon, Y., Megias, M. 2008. Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology & Biochemistry, 40(11), 2713-2721. DOI: 10.1016/j.soilbio.2008.06.016.

(VII) Duarte, A.P., Kiehl, J.C., Camargo, M.A.F., Reco, P.C. 2003. Acúmulo de matéria seca e nutriente em cultivares de milho originário de clima tropical e introduzido de clima temperado. Revista Brasileira de Milho e Sorgo, 2(3), 1-20. DOI: 10.18512/1980-6477/rbms.v2n3p1-20.

(VIII) Hungria, M., Campo, R.J., Souza, E.M., Pedrosa, F.O. 2010. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1), 413-425. DOI: https://doi.org/10.1007/s11104-009-0262-0.

(IX) Kado, C.I., Heskett, M.G. 1970. Selective Media for Isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, 60(6), 969-976. DOI: 10.1094/Phyto-60-969.

(X) Kalantari, S., Marefat, A., Naseri, B., Hemmati, R. 2018. Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology, 43(6), 499-505. DOI: https://doi.org/10.1007/s40858-018-0252-y.

(XI) Mafia, R.G., Alfenas, A.C., Maffia, L.A., Ferreira, E.M., Siqueira, L. 2007. Compatibility among rhizobacteria isolates and effect of mixture of isolates in inducing rooting and growth of eucalyptus clones. Árvore, 31(4), 635-643. DOI: https://doi.org/10.1590/S0100-67622007000400008.

(XII) Marchetti, M.M., Barp, E.A. 2015. Efeito rizosfera: a importância de bactérias fixadoras de nitrogênio para o solo/planta. Ignis, 4(1), 61-71. DOI: http://periodicos.uniarp.edu.br/index.php/ignis/article/view/767.

(XIII) Marks, B.B., Megias, M., Ollero, F.J., Nogueira, M.A., Araujo, R.S., Hungria, M. 2015. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, 5(71). DOI: 10.1186/s13568-015-0154-z.

(XIV) Martins, S.J., Rocha, J.A., Melo, H.C., Gerog, R.C., Ulhoa, C.J., Dianese, E.C., Oshiquiri, L.H., Cunha, M.G., Rocha, M.R., Araujo, L.G., Vaz, K.S., Dunlap, C.A. 2018. Plant-associated bacteria mitigate drought stress in soybean. Environmental Science and Pollution Research, 25, 13676-13686. DOI: 10.1007/s11356-018-1610-5.

(XV) Melo, S.R., Zilli, J.E. 2009. Fixação biológica de nitrogênio em cultivares de feijão-caupi recomendadas para o Estado de Roraima. Pesquisa Agropecuária Brasileira, 44(9), 1177-1183. DOI: http://dx.doi.org/10.1590/S0100-204X2009000900016.

(XVI) Noel, T., Sheng, C., Yost, C.K., Pharis, R.P., Hynes, M.F. 1996. Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Canadian Journal of Microbiology, 42(3), 279-283. DOI: https://doi.org/10.1139/m96-040.

(XVII) Paes, M.C.D, Pinho, R.G.V, Moreira, S.G. 2018. Soluções integradas para os sistemas de produção de milho e sorgo no Brasil, 21ª ed. ABMS-Associação Brasileira de Milho e Sorgo, Sete Lagoas.

(XVIII) Perrig, D., Boiero, M.L., Masciarelli, O.A., Penna, C., Ruiz, O.A., Cassan, F.D., Lunna, M.V. 2007. Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Applied Microbiology and Biotechnology, 75, 1143-1150. DOI: 10.1007/s00253-007-0909-9.

(XIX) Reis Junior, F.B., Machado, A., Machado, C.T.T., Sodek, L. 2008. Inoculação de Azospirillum amazonense em dois genótipos de milho sob diferentes regimes de nitrogênio. Revista Brasileira de Ciência do Solo, 32(3), 1139-1146. DOI: 10.1590/S0100-06832008000300022.

(XX) Romeiro, R.S. 2007. Controle biológico de doenças de plantas: procedimentos. Viçosa, UFV.

(XXI) Rothballer, M., Schmid, M., Fekete, A., Hartmann, A. 2005. Comparative in situ analysis of ipdC-gfpmut3 promotor fusions of Azospirillum brasilense strains Sp7 and Sp245. Environmental Microbiology, 7(11), 1839-1846. DOI: 10.1111/j.1462-2920.2005.00848.x.

(XXII) Rozier, C., Gerin, F, Czarnes, S., Legendre, L. 2019. Biopriming of maize germination by the plant growth-promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of plant Physiology, 237, 111-119. DOI: https://doi.org/10.1016/j.jplph.2019.04.011.

Downloads

Published

2021-02-12

How to Cite

Pereira, G. M. A., Menezes, R. de C., Cunha, M. G. da, & Carrer Filho, R. (2021). COMBINATION OF Azospirillum brasilense AND Bradyrhizobium japonicum IN THE PROMOTION OF INITIAL CORN GROWTH. REVISTA DE AGRICULTURA NEOTROPICAL, 8(1), e5360. https://doi.org/10.32404/rean.v8i1.5360

Most read articles by the same author(s)