DO EXOGENOUS APPLICATION OF THIAMINE MITIGATES LOW SOIL BASE SATURATION EFFECTS ON BELL PEPPER PLANTS?
Visualizações: 374DOI:
https://doi.org/10.32404/rean.v9i3.6803Keywords:
Carbon fixation, Biostimulants, Soil management, Plant protectionAbstract
The intensive use of land to produce vegetables results in high soil degradation and cultivated area. The use of techniques and resources that make production possible under unfavorable conditions can be decisive for agriculture. Thus, this study aimed to evaluate the isolated and joint effects of liming and thiamine application on the development of bell pepper plants. The treatments consisted of three different soil base saturation (36, 60, and 80%), combined with foliar application of thiamine (with and without) at a concentration of 100 mg L-1. It was found that thiamine mitigates the effects of low base saturation on the physiological traits of bell pepper plants. The increments related to the water use efficiency and instantaneous carboxylation efficiency allowed greater development of plants treated with thiamine. In addition, the application of thiamine is advantageous in cases where planting is carried out under conditions of low base saturation, followed by an adequate supply of nutrients or systems in which there is a partial or total correction of the soil chemical characteristics, promoting the development of plants and increased physiological activity.
References
(I) Abd El-Aziz, N.G., El-Quesni, E.M., Farahat, M.M. 2007. Response of vegetative growth and some chemical constituents of Syngonium podophyllum L. to foliar application of thiamine, ascorbic acid and kinetin at Nubaria. World Journal of Agricultural Sciences, 3(3), 301-305.
(II) Bahuguna, R.N., Joshi, R., Shukla, A., Pandey, M., Kumar, J. 2012. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 57, 159-167. DOI: https://doi.org/10.1016/j.plaphy.2012.05.003 DOI: https://doi.org/10.1016/j.plaphy.2012.05.003
(III) Barakat, H.O.D.A. 2003. Interactive effects of salinity and certain vitamins on gene expression and cell division. International Journal of Agriculture and Biology, 5(3), 219-225.
(IV) Brasil, E.C., Nascimento, E.V.S.D. 2010. Influência de calcário e fósforo no desenvolvimento e produção de variedades de maracujazeiro-amarelo. Revista Brasileira de Fruticultura, 32, 892-902. DOI: https://doi.org/10.1590/S0100-29452010005000092 DOI: https://doi.org/10.1590/S0100-29452010005000092
(V) Brignoni, A.S., Silva, H.F., Ervilha, J.D.C., Silva, F.G., Camargos, L.S., Souza, L.A. 2020. Biomass sorghum hybrids differ in growth and nitrogen use under low bases saturation in sandy soil. Research, Society and Development, 9(9), e488996289. DOI: https://doi.org/10.33448/rsd-v9i9.6289 DOI: https://doi.org/10.33448/rsd-v9i9.6289
(VI) Buesa, I., Miras-Ávalos, J.M., Paz, J.M., Visconti, F., Sanz, F., Yeves, A., Intrigliolo, D.S. 2021. Soil management in semi-arid vineyards: Combined effects of organic mulching and no-tillage under different water regimes. European Journal of Agronomy, 123, 126198. DOI: https://doi.org/10.1016/j.eja.2020.126198 DOI: https://doi.org/10.1016/j.eja.2020.126198
(VII) Cardoso, A.A.S., Santos, J.Z.L., Tucci, C.A.F., Barbosa, T.M.B. 2014. Acúmulo de nutrientes e crescimento da pimenta-de-cheiro em função de doses de calcário. Revista Agro@mbiente On-line, 8(2), 165-174. https://doi.org/10.18227/1982-8470ragro.v8i2.1881 DOI: https://doi.org/10.18227/1982-8470ragro.v8i2.1881
(VIII) El-Awadi, M.E., Abd Elbaky, Y.R., Dawood, M.G., Shalaby, M.A., Bakry, B.A. 2016. Enhancement quality and quantity of lupine plant via foliar application of some vitamins under sandy soil conditions. Research Journal of Pharmaceutical Biological and Chemical Sciences, 7(4), 1012-1024.
(IX) FAO. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. 2015. Solos saudáveis são a base da produção alimentar. http://www.fao.org/news/story/pt/item/284328/icode/ (Accessed December 02, 2021).
(X) Ferreira, D. F. 2014. Sisvar: um guia dos seus procedimentos de comparações múltiplas Bootstrap. Ciência e Agrotecnologia, 38, 109-112. DOI: https://doi.org/10.1590/S1413-70542014000200001 DOI: https://doi.org/10.1590/S1413-70542014000200001
(XI) Freire, L.R., Freire, L.R. 2013. Manual de calagem e adubação do Estado do Rio de Janeiro. Embrapa, Brasília.
(XII) Goyer, A. 2010. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry, 71(14-15), 1615-1624. DOI: https://doi.org/10.1016/j.phytochem.2010.06.022 DOI: https://doi.org/10.1016/j.phytochem.2010.06.022
(XIII) Hamada, A.M., Khulaef, E.M. 2000. Stimulative effects of ascorbic acid, thiamin or pyridoxine on Vicia faba growth and some related matabolic activities. Pakistan Journal of Biological. DOI: https://doi.org/10.3923/pjbs.2000.1330.1332 DOI: https://doi.org/10.3923/pjbs.2000.1330.1332
(XIV) Hatfield, J.L., Dold, C. 2019. Water-use efficiency: advances and challenges in a changing climate. Frontiers in plant science, 10, 103, 1-14. DOI: https://doi.org/10.3389/fpls.2019.00103 DOI: https://doi.org/10.3389/fpls.2019.00103
(XV) He, H., Li, Y., He, L.F. 2019. Aluminum toxicity and tolerance in Solanaceae plants. South African Journal of Botany, 123, 23-29. DOI: https://doi.org/10.1016/j.sajb.2019.02.008 DOI: https://doi.org/10.1016/j.sajb.2019.02.008
(XVI) Kaya, C., Ashraf, M., Sonmez, O., Tuna, A.L., Polat, T., Aydemir, S. 2015. Exogenous application of thiamin promotes growth and antioxidative defense system at initial phases of development in salt-stressed plants of two maize cultivars differing in salinity tolerance. Acta Physiologiae Plantarum, 37(1), 1-12. DOI: https://doi.org/10.1007/s11738-014-1741-3 DOI: https://doi.org/10.1007/s11738-014-1741-3
(XVII) Konarska, A. 2010. Effects of aluminum on growth and structure of red pepper (Capsicum annuum L.) leaves. Acta Physiologiae Plantarum, 32(1), 145-151. DOI: https://doi.org/10.1007/s11738-009-0390-4 DOI: https://doi.org/10.1007/s11738-009-0390-4
(XVIII) Mady, M.A. 2009. Effect of foliar application with salicylic acid and vitamin e on growth and productivity of tomato (Lycopersicon esculentum, Mill.) plant. Journal of Plant Production, 34(6), 6715-6726. DOI: https://doi.org/10.21608/jpp.2009.118654 DOI: https://doi.org/10.21608/jpp.2009.118654
(XIX) Martinis, J., Gas-Pascual, E., Szydlowski, N., Crèvecoeur, M., Gisler, A., Bürkle, L., Fitzpatrick, T.B. 2016. Long-distance transport of thiamine (vitamin B1) is concomitant with that of polyamines. Plant Physiology, 171(1), 542-553. DOI: https://doi.org/10.1104/pp.16.00009 DOI: https://doi.org/10.1104/pp.16.00009
(XX) Martins, D., Pitelli, R.A. 2000. Efeito da adubação fosfatada e da calagem nas relações de interferência entre plantas de soja e capim-marmelada. Planta daninha, 18(2), 331-347. DOI: https://doi.org/10.1590/S0100-83582000000200015 DOI: https://doi.org/10.1590/S0100-83582000000200015
(XXI) Moreira, S.G., Prochnow, L.I., Pauletti, V., Silva, B.M., Kiehl, J.D.C., Silva, C.G.M. 2017. Effect of liming on micronutrient availability to soybean grown in soil under different lengths of time under no tillage. Acta Scientiarum. Agronomy, 39, 89-97. DOI: https://doi.org/10.4025/actasciagron.v39i1.30691 DOI: https://doi.org/10.4025/actasciagron.v39i1.30691
(XXII) Nogueira, N., Oliveira, O., Martins, C., Bernardes, C. 2012. Utilização de leguminosas para recuperação de áreas degradadas. Enciclopédia biosfera, 8(14), 2121-2131.
(XXIII) Patinni, I.R.G., Andrade, C.A., Campos, C.N.S., Teodoro, L. P.R., Andrade, S.M., Roque, C.G., Teodoro, P.E. 2020. Agronomic performance and water‐use efficiency of F3 soybean populations grown under contrasting base saturation. Journal of Agronomy and Crop Science, 206(6), 806-814. DOI: https://doi.org/10.1111/jac.12413 DOI: https://doi.org/10.1111/jac.12413
(XXIV) Ribeiro, J.V.S., Semensato, L.R., Vendruscolo, E.P. 2020. Increasing doses of cattle manure for organic chili pepper production. Revista de Agricultura Neotropical, 7(3), 109-112. DOI: https://doi.org/10.32404/rean.v7i3.5158 DOI: https://doi.org/10.32404/rean.v7i3.5158
(XXV) Ronquim, C.C. 2010. Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. Embrapa, Brasília http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/882598 (accessed June 03, 2021)
(XXVI) Sahu, M.P., Solanki, N.S., Dashora, L.N. 1993. Effects of thiourea, thiamine and ascorbic acid on growth and yield of maize (Zea mays L.). Journal of Agronomy and Crop Science, 171(1), 65-69. DOI: https://doi.org/10.1111/j.1439-037X.1993.tb00437.x DOI: https://doi.org/10.1111/j.1439-037X.1993.tb00437.x
(XXVII) Sayed, S.A., Gadallah, M.A.A. 2002. Effects of shoot and root application of thiamin on salt-stressed sunflower plants. Plant Growth Regulation, 36(1), 71-80. DOI: https://doi.org/10.1023/A:1014784831387 DOI: https://doi.org/10.1023/A:1014784831387
(XXVIII) Taiz, L., Zeiger, E., Møller, I.M., Murphy, A. 2017. Fisiologia e desenvolvimento vegetal. Artmed Editora, Porto Alegre.
(XXIX) Vendruscolo, E. P., Seleguini, A. 2020. Effects of vitamin pre-sowing treatment on sweet maize seedlings irrigated with saline water. Acta Agronómica, 69(1), 20-25. DOI: https://doi.org/10.15446/acag.v69n1.67528 DOI: https://doi.org/10.15446/acag.v69n1.67528
(XXX) Vendruscolo, E.P., Siqueira, A.P.S., Furtado, J.P.M., Campos, L.F.C., Seleguini, A. 2018a. Development and quality of sweet maize inoculated with diazotrophic bacteria and treated thiamine. Revista de Agricultura Neotropical, 5(4), 45-51. DOI: https://doi.org/10.32404/rean.v5i4.2766 DOI: https://doi.org/10.32404/rean.v5i4.2766
(XXXI) Vendruscolo, E.P., Siqueira, A.P.S., Rodrigues, A.H.A., Oliveira, P.R., Correia, S.R., Seleguini, A. 2018b. Viabilidade econômica do cultivo de milho doce submetido à inoculação com Azospirillum brasilense e soluções de tiamina. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences, 61. DOI: http://dx.doi.org/10.22491/rca.2018.2674 DOI: https://doi.org/10.22491/rca.2018.2674
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.