BIOLOGICAL CONTROL OF Corynespora cassicola AND Drechslera tritici-repentis

Visualizações: 417

Authors

DOI:

https://doi.org/10.32404/rean.v9i4.7111

Keywords:

Pseudomonas fluorencens, Pantoea aglomerans, Bacillus sp., Mycelial growth inhibition

Abstract

Chemical control is the most widely used method for disease management in significant crops such as soybeans and wheat. However, for a few years biological control has gained prominence. Thus, we evaluated the antagonism of bacteria Pseudomonas fluorencens, Pantoea aglomerans, and Bacillus sp. on the phytopathogens Corynespora cassiicola and Drechslera tritici-repentis, previously isolated from soybean and wheat leaves, respectively. The experiments were carried out under controlled conditions at the Phytobacteriology Laboratory of the Faculty of Agronomy and Veterinary Medicine (FAVM), University of Passo Fundo (UPF), Rio Grande do Sul, Brazil. The treatments were: T1: P. Fluorencens + pathogen; T2: P. aglomerans + pathogen; T3: Bacillus spp. + pathogen, and T4: pathogen (control). In each experiment (C. cassiicola and D. tritici-repentis), a completely randomized design with six replications was used. The data were submitted to linear regression analysis, obtaining the daily increase rate (slope). The final time data was submitted to the ANOVA, and the means were compared by the Tukey test (P < 0.05). P. fluorescens, P. agglomerans, and Bacillus sp. reduced mycelial growth by 74 and 87% of C. cassiicola and D. tritici-repentis, respectively. Although this study was carried out under in vitro conditions, it can serve as a basis for other biological control studies, especially about the management of leaf spots caused by C. cassiicola and D. tritici-repentis, under field conditions.

Author Biographies

Aveline Avozani, Universidade de Passo Fundo

Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Passo Fundo, Rio Grande do Sul, Brasil.

Andréia Iraci Tumelero, Universidade de Passo Fundo

Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Passo Fundo, Rio Grande do Sul, Brasil.

Rosane Baldiga Tonin , Universidade de Passo Fundo

Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Passo Fundo, Rio Grande do Sul, Brasil.

Norimar Denardin, Universidade de Passo Fundo

Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Passo Fundo, Rio Grande do Sul, Brasil.

Abimael Gomes Silva, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus de Ilha Solteira, Ilha Solteira, São Paulo, Brasil.

Felipe Rafael Garcés-Fiallos, Technical University of Manabí

Technical University of Manabí, Experimental Campus La Teodomira, Faculty of Agronomic Engineering, Laboratory of Phytopathology,  Santa Ana, Ecuador.

References

(I) AGROFIT. 2022. Brasília, MAPA. https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (acessado 9 de agosto de 2022).

(II) Amorim, l.; Rezende, J.A.M.; Bergamin-Filho, A. 2018. Manual de fitopatologia: princípios e conceitos. 5. ed. Agronômica Ceres, Ouro Fino, v. 1. 573 p.

(III) Asaturova, A., Zhevnova, N., Tomashevich, N., Pavlova, M., Kremneva, O., Volkova, G., Sidorov, N. 2022. Efficacy of new local bacterial agents against Pyrenophora tritici-repentis in Kuban region, Russia. Agronomy, 12(2), 373. DOI: https://doi.org/10.3390/agronomy12020373

(IV) Avozani, A., Reis, E.M, Tonin, R.B. 2014. Sensitivity loss by Corynespora cassiicola, isolated from soybean, to the fungicide carbendazim. Summa Phytopathologica, 40(2), 273-276. DOI: https://doi.org/10.1590/0100-5405/1928

(V) Bach, E., Seger, G.D.D.S., Fernandes, G.C., Lisboa, B.B., Passagliaa, L.M.P. 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99(3), 141-149. DOI: https://doi.org/10.1016/j.apsoil.2015.11.002

(VI) Correa, E.B., Bettiol, W., Sutton, J.C. 2010. Controle biológico da podridão radicular (Pythium aphanidermatum) e promoção de crescimento por Pseudomonas chlororaphis 63-28 e Bacillus subtilis GB03 em alface hidropônica. Summa Phytopathologica, 36(4), 275-281. DOI: https://doi.org/10.1590/S0100-54052010000400001

(VII) Dimkić, I., Janakiev, T., Petrović, M., Degrassi, G., Fira, D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754. DOI: https://doi.org/10.1016/j.pmpp.2021.101754

(VIII) Dutkiewicz, J., Mackiewicz, B., Lemieszek, M.K., Golec, M., Milanowski, J. 2016. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2), 206-222 DOI: https://doi.org/10.5604/12321966.1203879

(IX) Fernandes, M.F.R., Ribeiro, T.G., Rouws, J.R., Soares, L.H.B, Zilli, J.É. 2021. Biotechnological potential of bacteria from genera Bacillus paraburkholderia and Pseudomonas to control seed fungal pathogens. Brazilian Journal of Microbiology, 52(2), 705-714. DOI: https://doi.org/10.1007/s42770-021-00448-9

(X) Ferraz, H.G.M.; Romeiro, R.S.; García, F.A.O., Souza, A.N. 2008. Biocontrole da mancha-alvo do tomateiro por Bacillus cereus em função do modo de dispensa na planta. Revista Trópica – Ciências Agrárias e Biológicas, 2(2), 35-39. https://scholar.google.com.br/scholar?cluster=6977707951730903831&hl=pt-BR&as_sdt=0,5

(XI) Lammari, H.I., Rehfus, A., Stammler, G., Benslimane, H. 2020. Sensitivity of the Pyrenophora teres population in Algeria to Quinone outside inhibitors, succinate dehydrogenase inhibitors and demethylation inhibitors. The Plant Pathology Journal, 36(3), 218. DOI: https://doi.org/10.5423%2FPPJ.OA.09.2019.0237

(XII) Laribi, M., Akhavan, A., Ben M’Barek, S., Yahyaoui, A.H., Strelkov, S.E., Sassi, K. 2022. Characterization of Pyrenophora tritici-repentis in Tunisia and comparison with a global pPathogen population. Plant Disease, 106(2), 464-474. DOI: https://doi.org/10.1094/PDIS-04-21-0763-RE

(XIII) Larran, S.; Simón, M.R., Moreno, M.V., Santamarina Siurana, M.P., Perelló, A. 2016. Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92(1), 17-23, DOI: https://doi.org/10.1016/j.biocontrol.2015.09.002

(XIV) Ludwig, J.; Moura, A.B. 2007. Controle biológico da queima-das-bainhas em arroz pela microbiolização de sementes com bactérias antagonistas. Fitopatologia Brasileira, 32(5), 381–386. DOI: https://doi.org/10.1590/S0100-41582007000500002

(XV) Meyer, M.C., Campos, H.D., Godoy, C.V., Mitinori, C., Utiamada, M.C.N.D.O., Jaccoud Filho, D.S, Venancio, W.S., Medeiros, F.H.V., Juliatti, F.C., Carneiro, L,C., Nunes Junior, J., Martins, M.C. 2019. Experimentos cooperativos de controle biológico de Sclerotinia sclerotiorum na cultura da soja: Resultados sumarizados da safra 2018/2019. Londrina, Embrapa Soja, 20p. https://acacia.cnpso.embrapa.br:8080/cferrugem_files/1669333285/CT%20161%20Ferrugem%20MS.pdf (acessado 9 de agosto de 2022).

(XVI) Meyer, M.C.; Campos, H.D.; Godoy, C.V.; Utiamada, C.M. (ed.). 2016. Ensaios cooperativos de controle biológico de mofo branco na cultura da soja - safras 2012 a 2015. Londrina, Embrapa Soja, 46 p. (Embrapa Soja. Documentos, 368). https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1041275 (acessado 9 de agosto de 2022)

(XVII) Moloi, M.J.; Van der Merwe, R. 2021. Drought tolerance rResponses in vegetable-tType soybean iInvolve a network of biochemical mechanisms at flowering and pod-filling stages. Plants, 10(8), 1-17. DOI: https://doi.org/10.3390/plants10081502

(XVIII) Rodriguez, F; Pfender, WF. 1997. Antibiosis and antagonism of Sclerotinia homoeocarpa and Drechslera poae by Pseudomonas fluorescens Pf-5 in vitro and in planta. Phytopathology, 87(6), 614-621. DOI: https://doi.org/10.1094/PHYTO.1997.87.6.614

(XIX) Rondon, M.N., Lawrence, K.S. 2019. Corynespora cassiicola isolates from soybean in Alabama detected with G143A mutation in the cytochrome b gene. Plant Health Progress, 20(4), 247-249. DOI: https://doi.org/10.1094/PHP-07-19-0046-BR

(XX) Ribeiro, S.M., Felicio, M.R., Boas, E.V., Goncalves, S., Costa, F.F., Samy, R.P., Franco, O.L. 2016. New frontiers for anti-biofilm drug development. Pharmacology & therapeutics, 160, 133-144, DOI: https://doi.org/10.1016/j.pharmthera.2016.02.006

(XXI) Sautua, F.J., Carmona, M.A. 2021. Detection and characterization of QoI resistance in Pyrenophora tritici‐repentis populations causing tan spot of wheat in Argentina. Plant Pathology, 70(9), 2125-2136. DOI: https://doi.org/10.1111/ppa.13436

(XXII) Shaheen, T.; Mahmood, R.; Shahid Riaz, M.; Zafar, Y.; Mahmood, R. 2016. Soybean Production and Drought Stress (1), 177–196. DOI: https://doi.org/10.1016/B978-0-12-801536-0.00008-6

(XXIII) Soares, R.M., Arias, C.A.A. 2020. Inheritance of soybean resistance to Corynespora cassiicola. Summa Phytopathologica, 46(2), 85-91. DOI: https://doi.org/10.1590/0100-5405/232903

(XXIV) Teramoto, A.; Meyer, M.C.; Suassuna, N.D.; Cunha, M.G. 2017. Sensibilidade de Corynespora cassiicola isolado de soja a fungicidas in vitro e controle químico de mancha-alvo da soja no campo. Summa Phytopathologica, 43(4), 281-289. DOI: https://doi.org/10.1590/0100-5405/2195

(XXV) Tonin, R.B.; Reis, E.M.; Avozani, A. 2017. Redução da sensibilidade in vitro de Drechslera tritici-repentis, isolados do trigo, a fungicidas estrobilurinas e triazóis, in vitro. Summa Phytopathologica, 43(1), 20-25. DOI: https://doi.org/10.1590/0100-5405/2160

(XXVI) Vasebi Y, Alizadeh A, Safaie N. 2015. Pantoea agglomerans ENA1 as a biocontrol agent of Macrophomia phaseolina and growth enhancer of soybean. Journal of Crop Protection, 4(1), 43–57. https://jcp.modares.ac.ir/article-3-8035-en.html (acessado 9 de agosto de 2022)

(XXVII) Vicentini, S.N.C., Carvalho, G, Krug, L.D., Nunes, T.C., Silva, A.G., Moreira, S.I., Gonçalves, L.M.D.P., Silva, T.C., Ceresini, PC. 2022. Bioprospecting fluorescent Pseudomonas from the Brazilian Amazon for the biocontrol of signal grass Foliar blight. Agronomy, 12(6), 1395. DOI: https://doi.org/10.3390/agronomy12061395

(XXVIII) Zhao, H.; Zhai, X.; Guo, L.; Liu, K.; Huang, D.; Yang, Y.; Li, J.; Xie, S.; Zhang, C.; Tang, S. 2019. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. Journal of Cleaner Production, 235, 724–732. DOI: https://doi.org/10.1016/j.jclepro.2019.06.251

(XXIX) Zhu, J., Zhang, L., Li, H., Gao, Y., Mu, W., Liu, F. 2020. Development of a LAMP method for detecting the N75S mutant in SDHI-resistant Corynespora cassiicola. Analytical Biochemistry, 597, 113687. DOI: https://doi.org/10.1016/j.ab.2020.113687

(XXX) Yang, M.M., Wen, S.S., Mavrodi, D.V., Mavrodi, O.V., von Wettstein, D., Thomashow, L.S., Guo, J.H., Weller, D.M. 2014. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology, 104(3): 248-256. DOI: https://doi.org/10.1094/PHYTO-05-13-0142-R

Downloads

Published

2023-02-02

How to Cite

Avozani, A., Tumelero, A. I., Baldiga Tonin , R., Denardin, N., Gomes Silva, A., & Garcés-Fiallos, F. R. (2023). BIOLOGICAL CONTROL OF Corynespora cassicola AND Drechslera tritici-repentis. REVISTA DE AGRICULTURA NEOTROPICAL, 9(4), e7111. https://doi.org/10.32404/rean.v9i4.7111

Most read articles by the same author(s)