Visualizações: 149





Pequizeiro, Germination, Storage, Prime, Neotropical Savanna


The propagation of Caryocar brasiliense (pequizeiro) is still little known. This study aimed to evaluate different osmotic conditions with polyethylene glycol (PEG) in the imbibition process and in the germination of pequi seeds, in addition to verifying the electrical conductivity to evaluate the viability of these seeds. The experiment was conducted with freshly dispersed pyrenes and with pyrenes stored for 90 days. The electrical conductivity of the aqueous solution was measured every six hours for up to 48 hours, using five replications with 20 seeds. The extracted seeds were placed in PEG solutions with osmotic potentials: 0.0; −1.0; −2.0; −3.0; −4.0 MPa, monitored at intervals of 12 hours to 60 hours, plus additional treatment with dry seeds without any type of imbibition. The design was completely randomized with four replications of 25 seeds for germination and four replications of ten seeds for monitoring water content during imbibition. Germination percentage, germination speed index (GSI), percentage of dead and live seeds at 40 days were evaluated. In seeds with longer storage time, the electrical conductivity was higher. Treatments that were not submitted to PEG showed higher GSI, lower mortality percentage and higher germination percentage with 40% and 37%, respectively. The electrical conductivity test was adequate.

Author Biographies

Vander Rocha Lacerda, São Paulo State University

São Paulo State University, School of Agriculture, Department of Vegetable Production (Horticulture), Botucatu, São Paulo, Brazil.

Levi Fraga Pagehú, Federal University of Espírito Santo

Federal University of Espírito Santo, Campus Alegre, Center for Agricultural Sciences and Engineering, Alegre, Espírito Santo, Brazil.

Armando Pego Gonçalves, Federal University of Minas Gerais

Federal University of Minas Gerais, Institute of Agrarian Sciences, Montes Claros, Minas Gerais, Brazil.

Delacyr da Silva Brandão Junior, Federal University of Minas Gerais

Federal University of Minas Gerais, Institute of Agrarian Sciences, Montes Claros, Minas Gerais, Brazil.

Paulo Sérgio Nascimento Lopes, Federal University of Minas Gerais

Federal University of Minas Gerais, Institute of Agrarian Sciences, Montes Claros, Minas Gerais, Brazil.


(I) Barbosa, R.M., Silva, C.B., Medeiros, M.A., Centurion, A.P.C., Vieira, R.D. 2012. Condutividade elétrica em função do teor de água inicial de sementes de amendoim. Ciência Rural, 42(1), 45–51. DOI: https://doi.org/10.1590/s0103-847820120001

(II) Barreto, L.C., Garcia, Q.S., Morales, M., Müller, M., Munné-Bosch, S. 2014. Vitamin E and defense-related phytohormones are reliable markers of embryo growth in macaw palm fruits exposed to various storage conditions. Plant Cell, Tissue and Organ Culture), 118(2), 203–213. DOI: https://doi.org/10.1007/s11240-014-0474-8.

(III) Baskin, C.C., Baskin, J.M. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. Elsevier, Amsterdam.

(IV) Bewley, J.D., Bradford K.J., Hilhorst, H., Nonogaki, H. 2013. Seeds Physiology of Development, Germination and Dormancy, 3rd Edition. Ny Springer, New York,

(V) BRASIL/MAPA. 2009. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E BASTECIMENTO. Rules for seed analysis. Brasília-DF: 399p. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946regrasanalisesementes.pdf (accessed July 07, 2023).

(VI) Carneiro, M.M.L.C., Deuner, S., Oliveira, P.V.D., Teixeira, S.B., Sousa, C.P., Bacarin, M.A., Moraes, D.M.D. 2011. Antioxidant activity and viability of sunflower seeds after water and saline stress. Revista Brasileira de Sementes. 33(4), 752–761. DOI: https://doi.org/10.1590/S0101-31222011000400017.

(VII) Carvalho, M.N., Nakagawa, J. 2012. Seeds: science, technology and production. 5. ed. Funep, Jaboticabal.

(VIII) Dombroski, J.L.D., Paiva, R., Alves, J.M.C., Santos, B.R., Nogueira, R.C., Paiva, P.D.O., Barbosa, S. 2010. Métodos para a superação da dormência fisiológica de Caryocar brasiliense Camb. Cerne, 16(2), 131–135. DOI: https://doi.org/10.1590/s0104-77602010000200003.

(IX) El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D., Bailly, C. 2013. Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers in Plant Science, 4(77), 1-5. DOI: https://doi.org/10.3389/fpls.2013.00077.

(X) Faria-Machado, A.F., Tres, A., van Ruth, S.M., Antoniassi, R., Junqueira, N.T., Lopes, P.S.N., Bizzo, H.R. 2015. Discrimination of pulp oil and kernel oil from pequi (Caryocar brasiliense) by fatty acid methyl esters fingerprinting, using GC-FID and multivariate analysis. Journal of agricultural and food chemistry, 63(45), 10064-10069. DOI: https://doi.org/10.1021/acs.jafc.5b03699.

(XI) Finch-Savage, B. 2013. Seeds: Physiology of development, germination and dormancy. In: J.D. Bewley, K.J. Bradford, H.W.M. Hilhorst H. Nonogaki. 3.ed. Springer, New York – Heidelberg – Dordrecht – London. Seed Science Research. 23(4), 289–289. DOI: https://doi.org/10.1017/S0960258513000287

(XII) Finch-Savage, W.E. Bassel, G.W. 2016. Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany, 67(3), 567–591. DOI: https://doi.org/10.1093/jxb/erv490.

(XIII) Guedes, A.M.M., Antoniassi, R., Faria-Machado, A.F. 2017. Pequi: a Brazilian fruit with potential uses for the fat industry. Oilseeds & fats Crops and Lipids. 24(5), 507-601. DOI: https://doi.org/10.1051/ocl/2017040.

(XIV) Ibrahim, E.A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. 192(1), 38–46. DOI: https://doi.org/10.1016/j.jplph.2015.12.011.

(XV) Krzyzanowski, F.C., Vieira, R.D., Marcos-Filho, J., França-Neto, J.B. (Ed.). 2021. Vigor de sementes: conceitos e testes. Associação Brasileira de Tecnologia de Sementes, Comitê de Vigor de Sementes. 2.ª ed. ABRATES, Londrina.

(XVI) Long, R.L., Gorecki, M.J., Renton, M., Scott, J.K., Colville, L., Goggin, D.E., Commander, L.E., Westcott, D.A., Cherry, H., Finch-Savage, W.E. 2014. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews, 90(1), 31–59. DOI: https://doi.org/10.1111/brv.12095.

(XVII) Luan, Z., Xiao, M., Zhou, D., Zhang, H., Tian, Y., Wu, Y., Guan, B., Song, Y. 2014. Effects of Salinity, Temperature, and Polyethylene Glycol on the Seed Germination of Sunflower (Helianthus annuus L.). The Scientific World Journal,17 (4), 1–9. DOI: https://doi.org/10.1155/2014/170418.

(XVIII) Maguire, J.D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176–177.

(XIX) Michel, B.E., Kaufmann, M.R. 1973. The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology. 51(5), 914–916.

(XX) Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., Maggio, A. 2013. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions, 9(1), 354–363. DOI: https://doi.org/10.1080/17429145.2013.835880.

(XXI) Nóbrega, J.S., Silva, L.G., Bezerra, A.C., Bruno, R.L.A., Souto, A.G.L., Silva, T.I., 2022. Physiological Response of Seeds of Crotalaria spectabilis under Drought and Heat Stress. Brazilian Archives of Biology and Technology, 65(1), 1-8. DOI: https://doi.org/10.1590/1678-4324-2022220145.

(XXII) Patanè, C., Saita, A., Tubeileh, A., Cosentino, S.L., Cavallaro, V. 2016. Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta Physiologiae Plantarum, 38(5), 1-12. DOI: https://doi.org/10.1007/s11738-016-2135-5.

(XXIII) Pereira, M.R.R., Martins, C.C., Martins, D., Silva, R.J.N., 2014. Water stress induced by PEG and NaCl solutions in the germination of turnip greens and fedegoso seeds. Bioscience Journal. 30(3), 687–696.

(XXIV) Pinto, L.C.L., Morais, L.M.O., Guimarães, A.Q., Almada, E.D., Barbosa, P.M., Drumond, M.A. 2016. Traditional knowledge and uses of the Caryocar brasiliense Cambess. (Pequi) by ‘quilombolas’ of Minas Gerais, Brazil: subsidies for sustainable management. Brazilian Journal of Biology, 76(2), 511–519. DOI: https://doi.org/10.1590/1519-6984.22914.

(XXV) Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job C. 2012. Seed Germination and Vigor. Annual Review of Plant Biology. 63(1), 507–33.

(XXVI) Sousa, A.M.S., Lopes, P.S.N., Ribeiro, L.M., Santiago, T.A., Lacerda, V.R., Martins, C.P.S. 2017a. Germination and storage of Caryocar brasiliense seeds. Seed Science and Technology, 45(3), 557-569. DOI: https://doi.org/10.15258/sst.2017.45.3.18.

(XXVII) Sousa, A.M.S., Lopes, P.S.N., Ribeiro, L.M., Andrade, M.S., Mercadante-Simões, M.O. 2017b. Structural aspects of germination control in pyrenes of Caryocar brasiliense (Caryocaraceae). Trees, 31(3), 887–902. DOI: https://doi.org/10.1007/s00468-016-1514-2.

(XXVIII) Wang, C., Zhou, L., Zhang, G., Xu, Y., Gao, X., Jiang, N. 2018. Effects of Drought Stress Simulated by Polyethylene Glycol on Seed Germination, Root and Seedling Growth, and Seedling Antioxidant Characteristics in Job’s Tears. Agricultural Sciences. 09(08), 991-1006. DOI: https://doi.org/10.4236/as.2018.98069.

(XXIX) Waterworth, W.M., Bray, C.M., West, C.E. 2015. The importance of safeguarding genome integrity in germination and seed longevity. Journal of Experimental Botany, 66(12), 3549–3558. DOI: https://doi.org/10.1093/jxb/erv080




How to Cite

Rocha Lacerda, V., Fraga Pagehú, L., Pego Gonçalves, A., da Silva Brandão Junior, D., & Nascimento Lopes, P. S. (2023). ELECTRICAL CONDUCTIVITY AND OSMOTIC CONDITIONING WITH POLYETHYLENE GLYCOL IN STORAGE Caryocar brasiliense SEEDS. REVISTA DE AGRICULTURA NEOTROPICAL, 10(3), e7362. https://doi.org/10.32404/rean.v10i3.7362