NEMATODES AND ROOT SYSTEM ARE AFFECTED BY RHIZOBACTERIAL CONSORTIUM IN THE THIRD GENERATION OF COMMERCIAL BANANA PLANTS

Visualizações: 278

Authors

DOI:

https://doi.org/10.32404/rean.v10i3.7725

Keywords:

Musa acuminata AAA, Radopholus similis, Root system damage, Nematode biological control, Rhizobacteria

Abstract

Rhizobacteria has shown promising results in managing nematodes and improving the root system of banana plants. However, their effects on commercial banana plants in different generations remain unclear. In this study performed under field experiment, we evaluated the effect of three types (injection, edaphic and foliar) of a local rhizobacterial consortium application on the system root, nematode populations, and their damage in the third-generation plants. Only mother and daughter plants were treated twice with the rhizobacteria. Plants not treated with rhizobacteria constituted the control treatment. Our results show that rhizobacteria affect different underground tissues and nematodes in third-generation banana plants. Helicotylenchus spp., Meloidogyne spp., Pratylenchus spp., Radopholus similis, and Rhabditis spp. were the nematodes found in banana roots. R. similis population and the damage in the root system of banana plants were reduced significantly by the rhizobacteria edaphic application. The application of rhizobacteria could be a sustainable management strategy over time to improve the root system and suppress nematodes, and their damage in commercial banana plants.

Author Biographies

Ángel Mauricio Crespo-Clas, Technical University of Manabí

Technical University of Manabí, Postgraduate Institute, Portoviejo, Manabí, Ecuador.

Hayron Fabricio Canchignia-Martínez, State Technical University of Quevedo

State Technical University of Quevedo, Facultaty of Ciencias Agrarias, Santo Domingo de los Tsachilas, Quevedo, Los Ríos Ecuador.

Felipe Rafael Garcés Fiallos, Technical University of Manabí

Technical University of Manabí, Experimental Campus La Teodomira, Santa Ana, Manabí, Ecuador.

References

(I) Calderón, J., Miño-Castro, G., Llumiquinga, P., Abbas, M., Gutiérrez-Gutiérrez, C., Segovia-Salcedo, M., Proaño, K. 2022. Distribution of Meloidogyne spp. in agricultural crops of Ecuador: a literature review (1976-2021). CABI Reviews, 17, 28. DOI: https://doi.org/10.1079/cabireviews202217028

(II) Chávez, C., Araya, M. 2010. Spatial-temporal distribution of plant-parasitic nematodes in banana (Musa AAA) plantations in Ecuador. Journal of Applied Bioscience. 33: 2057–2069.

(III) Chávez–Velazco, C., Solórzano–Figueroa, F., Araya–Vargas, M. 2009. Relación entre nematodos y la productividad del banano (Musa AAA) en Ecuador. Agronomía Mesoamericana, 20(2), 351–360, 2009. DOI: https://doi.org/10.15517/am.v20i2.4951

(IV) Chávez–Arteaga, K., Guato–Molina, J., Peñafiel–Jaramillo, M., Mestanza–Uquillas, C., Canchignia–Martínez, H.F. 2018. Bacterias fluorescentes productoras de metabolitos antagónicos de cultivares nativos de Musa spp. y su diversidad filogenética al gen ARNr 16S. Ciencia y Tecnología, 11, 17–29. DOI: https://doi.org/10.18779/cyt.v11i2.232

(V) Chávez–Arteaga, K.T., Guato–Molina, J.J., Rodríguez–Acosta, J.L., Cedeño–Moreira, Ángel V., Romero–Meza, R.F., Canchignia–Martínez, H.F. 2020. Rizobacterias con potencial antagonista in vitro a Mycosphaerella fijiensis Morelet. Ciencia y Tecnología, 13(2), 9–16. DOI: https://doi.org/10.18779/cyt.v13i2.387

(VI) Chávez–Arteaga, K.T., Cedeño–Moreira, Á.V.; Canchignia–Martínez, H.F., Garcés–Fiallos, F.R. 2022. Candidate rhizobacteria as plant growth-promoters and root-knot nematode controllers in tomato plants. Scientia Agropecuaria, 13(4), 423–432. DOI: http://dx.doi.org/10.17268/sci.agropecu.2022.038

(VII) Churchill A.C. 2011. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular Plant Pathololgy, 12(4), 307–328. DOI: https://doi.org/10.1111/j.1364-3703.2010.00672.x

(VIII) Drenth, A., Kema, G. 2021. The vulnerability of bananas to globally emerging disease threats. Phytopathology. 111(12), 2146–2161. DOI: https://doi.org/10.1094/PHYTO-07-20-0311-RVW

(IX) Fotso, S., Kolaye, G., Ntahomvukiye, J., Bowong, S., Taffouo, V. 2022. Modelling the influence of climatic factors on the population dynamics of Radopholus similis: Banana-plantain pest. Acta Biotheorica, 70, 21. DOI: https://doi.org/10.1007/s10441-022-09444-4

(X) Gionco, B., Tavares, E.R., Oliveira, A.G., Yamada-Ogatta, S. F., Carmo, A.O., Pereira, U.P., Chideroli, R.T., Simionato, A.S., Navarro, M.O.P, Chryssafidis, A.L., Andrade, G. 2017. New insights about antibiotic production by Pseudomonas aeruginosa: A Gene Expression Analysis. Frontiers in Chemistry, 5, 66. DOI: https://doi.org/10.3389/fchem.2017.00066

(XI) Jimenez, M., Van der Veken, L., Neirynck, H., Rodríguez, L., Ruiz, L., Swennen, R. 2007. Organic banana production in Ecuador: Its implications on black Sigatoka development and plant–soil nutritional status. Renewable Agriculture and Food Systems, 22(4); 297–306. DOI: https://doi.org/10.1017/S1742170507001895

(XII) King, E.O., Ward, M.K., Raney, D.E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44(2), 301–307.

(XIII) Kisaakye, J., Fourie, H., Coyne, D., Cortada, L., Khamis, F.M., Subramanian, S., Masinde, S., Haukeland, S. 2023. Endophytic fungi improve management of the burrowing nematode in banana (Musa spp.) through enhanced expression of defence-related genes. Nematology, 25(4), 427–442. DOI: https://doi.org/10.1163/15685411-bja10229

(XIV) Lara–Posadas, S.V., Núñez–Sánchez, Á.E., López–Lima, D., Carrión, G. 2016. Plant parasitic nematodes associated to banana roots (Musa acuminata AA) in central Veracruz, México. Revista Mexicana de Fitopatología, 34(1), 116–130. DOI: https://doi.org/10.18781/R.MEX.FIT.1507-7

(XV) Marcano, I.E., Díaz–Alcántara, C.A., Urbano, B., González–Andrés F. 2016. Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop. Soil Biology and Biochemistry, 99, 1–20. DOI: https://doi.org/10.1016/j.soilbio.2016.04.013

(XVI) Pires, D., Vicente, C.S.L., Menéndez, E., Faria, J.M.S., Rusinque, L., Camacho, M.J., Inácio, M.L. 2022. The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens, 11, 1178. DOI: https://doi.org/10.3390/pathogens11101178

(XVII) Sarah, J.L., Boisseau, L.M. 2008. Nematode extraction from banana roots by the centrifugal-flotation technique. Fruits, 63(4), 249–251. DOI: https://doi.org/10.1051/fruits:2008018

(XVIII) Silva, F.A.S., Azevedo, C.A. 2002. Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais, 4(1), 71–78. DOI: http://dx.doi.org/10.15871/1517-8595/rbpa.v4n1p71-78

(XIX) Simpson, M.G. 2019. Diversity and Classification of Flowering Plants: Amborellales, Nymphaeales, Austrobaileyales, Magnoliids, Monocots, and Ceratophyllales. In: Simpson, M.G. Plant Systematics. 3ed ed. Academic Press, Amsterdam. p. 187-284. DOI: https://doi.org/10.1016/B978-0-12-812628-8.50007-9

(XX) Torres-Asuaje, P.E., Cotes-Prado, A.M., Echeverría-Beirute, F.; Blanco-Rojas, F.A., Sandoval-Fernández, J.A., Segura-Mena, R.A., Palomares-Rius, J.E. 2023. Ensilaged biostimulants promoting root health and control of Radopholus similis in banana (Musa AAA) cv. Grande Naine. European Journal of Plant Pathology, 165, 465–474. DOI: https://doi.org/10.1007/s10658-022-02617-4

(XXI) Yang, D., Wang, L., Wang, T., Zhang, Y., Zhang, S., Luo, Y. 2021. Plant growth–promoting rhizobacteria hn6 induced the change and reorganization of Fusarium microflora in the rhizosphere of banana seedlings to construct a healthy banana microflora. Frontiers in Microbiology, 12, 685408. DOI: https://doi.org/10.3389/fmicb.2021.685408

(XXII) Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., Shen, Q. 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5, 13438. DOI: https://doi.org/10.1038/srep13438

(XXIII) Yuan, J., Wu, Y., Zhao, M., Wen, T., Huang, Q., Shen, Q. 2018. Effect of phenolic acids from banana root exudates on root colonization and pathogen suppressive properties of Bacillus amyloliquefaciens NJN-6. Biological Control, 125, 131–137. DOI: https://doi.org/10.1016/j.biocontrol.2018.05.016

Downloads

Published

2023-08-30

How to Cite

Crespo-Clas, Ángel M., Canchignia-Martínez, H. F., & Garcés Fiallos, F. R. (2023). NEMATODES AND ROOT SYSTEM ARE AFFECTED BY RHIZOBACTERIAL CONSORTIUM IN THE THIRD GENERATION OF COMMERCIAL BANANA PLANTS. REVISTA DE AGRICULTURA NEOTROPICAL, 10(3), e7725. https://doi.org/10.32404/rean.v10i3.7725