APPLICATION TECHNOLOGY AND EFFECTIVENESS OF AUXIN HERBICIDES IN CONTROLLING Conyza sumatrensis AND Commelina benghalensis

Visualizações: 195

Authors

DOI:

https://doi.org/10.32404/rean.v11i1.8319

Keywords:

2,4-D, Benghal dayflower, Dicamba, Sumatran fleabane, Spray nozzles

Abstract

The Sumatran fleabane (Conyza sumatrensis [Retz.] E. Walker) and Benghal dayflower (Commelina benghalensis L.) are among the most challenging weeds to control in agricultural crops. However, synthetic auxins present a potential solution. This study aimed to assess the efficacy of auxin herbicides in controlling C. sumatrensis and C. benghalensis using two spray volumes and two types of nozzles: Turbo TeeJet® Induction (TTI) and Extended Range (XR). The research comprised four experiments conducted in a greenhouse in Curitiba, Paraná, Brazil, from November 2019 to January 2020. For C. sumatrensis, no significant differences were observed between treatments at both stages of development. Consequently, it was not possible to identify the most effective herbicide, volume, or application nozzle. However, all treatments were found to be effective by the end of the evaluations. In contrast, for C. benghalensis, 2,4-D demonstrated higher efficacy than dicamba, irrespective of the developmental stages. The reduction in spray volume from 200 to 140 L ha−1, and the use of the TTI nozzle did not impact the effectiveness of the herbicides. The stage of development did not influence the herbicide control. In this case, the target species was the predominant factor in determining the effectiveness of control.

Author Biographies

Alexandre Filus, Universidade Federal do Paraná

Universidade Federal do Paraná, Curitiba, Paraná, Brasil. 

Arthur Arrobas Martins Barroso, Universidade Federal do Paraná

Universidade Federal do Paraná, Curitiba, Paraná, Brasil. 

Alfredo Junior Paiola Albrecht, Universidade Federal do Paraná

Universidade Federal do Paraná, Setor Palotina, Palotina, Paraná, Brasil. 

André Felipe Moreira Silva, Crop Science Pesquisa e Consultoria Agronômica Ltda

Crop Science Pesquisa e Consultoria Agronômica Ltda., Maripá, Paraná, Brasil.

Leandro Paiola Albrecht, Universidade Federal do Paraná

Universidade Federal do Paraná, Setor Palotina, Palotina, Paraná, Brasil.

Eduardo Roncatto, Universidade Federal do Paraná

Universidade Federal do Paraná, Curitiba, Paraná, Brasil.

References

(I) Albrecht, A.J.P., Pereira, V.G.C., Souza, C.N.Z., Zobiole, L.H.S., Albrecht, L.P., Adegas, F.S. 2020. Multiple resistance of Conyza sumatrensis to three mechanisms of action of herbicides. Acta Scientiarum. Agronomy, 42(1), e42485. DOI: https://doi.org/10.4025/actasciagron.v42i1.42485. DOI: https://doi.org/10.4025/actasciagron.v42i1.42485

(II) Albrecht, L.P., Heimerdinger, N., Albrecht, A.J.P., Silva, A.F.M., Piccin, E.S., Silva, L.M., Larini, W.F.M. 2022. Chemical control of fleabane resistant to 2, 4-D. Outlooks on Pest Management, 33(6), 239-243. DOI: https://doi.org/10.1564/v33_dec_07. DOI: https://doi.org/10.1564/v33_dec_07

(III) Al-Khatib, K., Peterson, D. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technology, 13(2), 264-270. DOI: https://doi.org/10.1017/S0890037X00041713. DOI: https://doi.org/10.1017/S0890037X00041713

(IV) Butts, T.R., Samples, C.A., França, L.X., Dodds, D.M., Reynolds, D.B., Adams, J.W., Zollinger, R.K., Howatt, K.A., Fritz, B.K., Hoffmann, W.K., Luck, J.D., Kruger G.R. 2019. Droplet size impact on efficacy of a dicamba-plus-glyphosate mixture. Weed Technology, 33(1), 66-74. DOI: https://doi.org/10.1017/wet.2018.118. DOI: https://doi.org/10.1017/wet.2018.118

(V) Campos, C.F., Rodrigues-Costa, A.C.P., Cardoso, L.A., Pereira, M.R.R., Souza, G.S.F., Martins, D. 2013. Efficacy of glyphosate and 2,4-D in the control of Commelina villosa. Arquivos do Instituto Biológico, 80(1), 83-89. DOI: https://doi.org/10.1590/S1808-16572013000100012. DOI: https://doi.org/10.1590/S1808-16572013000100012

(VI) Cantu, R.M., Albrecht, L.P., Albrecht, A.J.P., Silva, A.F.M., Danilussi, M.T.Y., Lorenzetti, J.B. 2021. Herbicide alternative for Conyza sumatrensis control in pre-planting in no-till soybeans. Advances in Weed Science, 39, e2021000025. DOI: https://doi.org/10.51694/AdvWeedSci/2021;39:000012. DOI: https://doi.org/10.51694/AdvWeedSci/2021;39:000012

(VII) Contiero, R.L., Biffe, D.F., Constantin, J., Oliveira Júnior, R.S., Braz, G.B., Lucio, F.R., Schleier III, J.J. 2016. Effects of nozzle types and 2,4-D formulations on spray deposition. Journal of Environmental Science and Health, Part B, 51(12), 888-893. DOI: https://doi.org/10.1080/03601234.2016.1241640. DOI: https://doi.org/10.1080/03601234.2016.1241640

(VIII) Crose, J.A., Manuchehri, M.R., Baughman, T.A. 2020. Horseweed (Conyza canadensis) management in Oklahoma winter wheat. Weed Technology, 34(2), 229-234. DOI: https://doi.org/10.1017/wet.2019.99. DOI: https://doi.org/10.1017/wet.2019.99

(IX) Dias, A.C.R., Carvalho, S.J.P., Christoffoleti, P.J. 2013. Phenology of Bengal dayflower as indicator of glyphosate tolerance. Planta Daninha, 31(1), 185-191. DOI: http://dx.doi.org/10.1590/s0100-83582013000100020. DOI: https://doi.org/10.1590/S0100-83582013000100020

(X) Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001. DOI: https://doi.org/10.1590/S1413-70542011000600001

(XI) Flessner, M.L., Pittman, K.B. 2019. Horseweed control with preplant herbicides after mechanical injury from small grain harvest. Agronomy Journal, 111(6), 3274-3280. DOI: https://doi.org/10.2134/agronj2019.03.0174. DOI: https://doi.org/10.2134/agronj2019.03.0174

(XII) Foster, M.R., Griffin, J.L. 2018. Injury criteria associated with soybean exposure to dicamba. Weed Technology, 32(5), 608-617. DOI: https://doi.org/10.1017/wet.2018.42. DOI: https://doi.org/10.1017/wet.2018.42

(XIII) Freitas, N.M., Freitas, F.C.L., Furtado, I.F., Teixeira, M.F.F., Silva, V.F. 2018. Herbicide mixtures to control dayflowers and drift effect on coffee cultures. Planta Daninha, 36, e018169798. DOI: https://doi.org/10.1590/s0100-83582018360100047. DOI: https://doi.org/10.1590/s0100-83582018360100047

(XIV) Griffin, J.L., Bauerle, M.J., Stephenson, D.O., Miller, D.K., Boudreaux, J.M. 2013. Soybean response to dicamba applied at vegetative and reproductive growth stages. Weed Technology, 27(4), 696-703. DOI: https://doi.org/10.1614/WT-D-13-00084.1. DOI: https://doi.org/10.1614/WT-D-13-00084.1

(XV) Grossmann, K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science, 66(2), 113-120. DOI: https://doi.org/10.1002/ps.1860. DOI: https://doi.org/10.1002/ps.1860

(XVI) Hedges, B.K., Soltani, N., Hooker, D.C., Robinson, D.E., Sikkema, P.H. 2018. Influence of glyphosate/dicamba application rate and timing on the control of glyphosate-resistant horseweed in glyphosate/dicamba-resistant soybean. Weed Technology, 32(6), 678-682. DOI: https://doi.org/10.1017/wet.2018.72. DOI: https://doi.org/10.1017/wet.2018.72

(XVII) Hedges, B.K., Soltani, N., Robinson, D.E., Hooker, D.C., Sikkema, P.H. 2019. Control of glyphosate-resistant Canada fleabane in Ontario with multiple effective modes-of-action in glyphosate/dicamba-resistant soybean. Canadian Journal of Plant Science, 99(1), 78-83. DOI: https://doi.org/10.1139/cjps-2018-0067. DOI: https://doi.org/10.1139/cjps-2018-0067

(XVIII) McCauley, C.L., Young, B.G. 2019. Differential response of horseweed (Conyza canadensis) to halauxifen-methyl, 2,4-D, and dicamba. Weed Technology, 33(5), 673-679. DOI: https://doi.org/10.1017/wet.2019.56. DOI: https://doi.org/10.1017/wet.2019.56

(XIX) Merchant, R.M., Sosnoskie, L.M., Culpepper, A.S., Steckel, L.E., York, A.C., Braxton, L.B., Ford, J.C. 2013. Weed response to 2,4-D, 2,4-DB, and dicamba applied alone or with glufosinate. Journal of Cotton Science, 17(3), 212-218.

(XX) Nunes, R.T., Albrecht, A.J.P., Albrecht, L.P., Lorenzetti, J.B., Danilussi, M.T.Y., Silva, R.M. H., Silva, A.F.M., Barroso, A.A.M. 2023. Soybean injury caused by the application of subdoses of 2, 4-D or dicamba, in simulated drift. Journal of Environmental Science and Health, Part B, 58(4), 327-333. DOI: https://doi.org/10.1080/03601234.2023.2173927. DOI: https://doi.org/10.1080/03601234.2023.2173927

(XXI) Oliveira, R.B., Precipito, L.M.B., Gandolfo, M.A., Oliveira, J.V., Lucio, F.R. 2019. Effect of droplet size and leaf surface on retention of 2,4-D formulations. Crop Protection, 119, 97-101. DOI: https://doi.org/10.1016/j.cropro.2019.01.015. DOI: https://doi.org/10.1016/j.cropro.2019.01.015

(XXII) Oliveira Junior, R.S., Biffe, D.F., Machado, D.F., Silva, V.F.V. 2021. Mecanismos de ação de herbicidas, in: Barroso, A.A.M., Murata, A.T. (Eds.), Matologia. Fábrica da Palavra, Jaboticabal, 170-204.

(XXIII) Osipe, J.B., Oliveira Júnior, R.S., Constantin, J., Takano, H.K., Biffe, D.F. 2017. Spectrum of weed control with 2,4-D and dicamba herbicides associated to glyphosate or not. Planta Daninha, 35, e017160815. DOI: https://doi.org/10.1590/s0100-83582017350100053. DOI: https://doi.org/10.1590/s0100-83582017350100053

(XXIV) Peterson, M.A., McMaster, S.A., Riechers, D.E., Skelton, J., Stahlman, P.W. 2016. 2,4-D past, present, and future: a review. Weed Technology, 30(2), 303-345. DOI: https://doi.org/10.1614/WT-D-15-00131.1. DOI: https://doi.org/10.1614/WT-D-15-00131.1

(XXV) Pinho, C.F., Leal, J.F.L., Souza, A.S., Oliveira, G.F.P.B., Oliveira, C., Langaro, A.C., Machado, A.F.L., Christoffoleti, P.J., Zobiole, L.H.S. 2019. First evidence of multiple resistance of Sumatran fleabane (Conyza sumatrensis (Retz.) E.Walker) to five-mode-of-action herbicides. Australian Journal of Crop Science, 13(10), 1688-1697. DOI: https://doi.org/10.21475/ajcs.19.13.10.p1981. DOI: https://doi.org/10.21475/ajcs.19.13.10.p1981

(XXVI) Queiroz, A.R., Delatorre, C.A., Lucio, F.R., Rossi, C.V.S., Zobiole, L.H.S., Merotto Junior, A. 2020. Rapid necrosis: a novel plant resistance mechanism to 2,4-D. Weed Science, 68(1), 6-18. DOI: https://doi.org/10.1017/wsc.2019.65. DOI: https://doi.org/10.1017/wsc.2019.65

(XXVII) Santos, G., Oliveira Junior, R.S., Constantin, J., Francischini, A.C., Osipe, J.B. 2014. Multiple resistance of Conyza sumatrensis to chlorimuron-ethyl and to glyphosate. Planta Daninha, 32(2), 409-416. DOI: http://dx.doi.org/10.1590/s0100-83582014000200019. DOI: https://doi.org/10.1590/S0100-83582014000200019

(XXVIII) Sherman, A.D., Haramoto, E.R., Green, J.D. 2020. Integrating fall and spring herbicides with a cereal rye cover crop for horseweed (Conyza canadensis) management prior to soybean. Weed Technology, 34(1), 64-72. DOI: https://doi.org/10.1017/wet.2019.116. DOI: https://doi.org/10.1017/wet.2019.116

(XXIX) Silva, A.F.M., Silva, G.S., Mendes, K.F., Giraldeli, A.L., Tornisielo, V.L., Victoria Filho, R. 2019. Absorption, translocation and metabolism of aminocyclopyrachlor in young plants of Ipomoea purpurea and Ipomoea triloba. Weed Research, 59(1), 58-66. DOI: https://doi.org/10.1111/wre.12345. DOI: https://doi.org/10.1111/wre.12345

(XXX) Souza, L.A., Cunha, J.P.A.R., Pavanin, L.A. 2011. Efficacy and loss of 2,4-D amine herbicide applied at different spray volumes and nozzles. Planta Daninha, 29, 1149-1156. DOI: https://doi.org/10.1590/S0100-83582011000500023. DOI: https://doi.org/10.1590/S0100-83582011000500023

(XXXI) Velini, E.D., Osipe, R., Gazziero, D.L.P. 1995. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. SBCPD, Londrina.

(XXXII) Zobiole, L.H.S., Pereira, V.G.C., Albrecht, A.J.P., Rubin, R.S., Adegas, F.S., Albrecht, L.P. 2019. Paraquat resistance of Sumatran fleabane (Conyza sumatrensis). Planta Daninha, 37, e019183264. DOI: http://dx.doi.org/10.1590/s0100-83582019370100018. DOI: https://doi.org/10.1590/s0100-83582019370100018

Downloads

Published

2024-03-01

How to Cite

Filus, A., Barroso, A. A. M., Albrecht, A. J. P., Silva, A. F. M., Albrecht, L. P., & Roncatto, E. (2024). APPLICATION TECHNOLOGY AND EFFECTIVENESS OF AUXIN HERBICIDES IN CONTROLLING Conyza sumatrensis AND Commelina benghalensis. REVISTA DE AGRICULTURA NEOTROPICAL, 11(1), e8319. https://doi.org/10.32404/rean.v11i1.8319

Most read articles by the same author(s)