GROWTH AND YIELD OF BRAZILIAN SPINACH UNDER DIFFERENT SHADING INTENSITIES AND HARVESTING PERIODS IN A TROPICAL LOWLAND URBAN ECOSYSTEM

Visualizações: 191

Authors

DOI:

https://doi.org/10.32404/rean.v11i2.8464

Keywords:

Harvest time, Leafy green, Vegetables, Plant acclimatization, Solar irradiation

Abstract

Brazilian spinach (Alternanthera sissoo) is a less prominent perennial leafy vegetable growing in the tropical ecosystem. Therefore, this research aimed to investigate the effects of different shading intensities and harvesting periods on the growth and yield of Brazilian spinach in a tropical lowland urban ecosystem. The investigation used a split-plot design, with different shading intensities (no-shading, 45%, 55%, and 80% shading) as the main plot and harvesting periods (every 2, 3, and 4 weeks) as the subplot. The results showed that Brazilian spinach growth was significantly enhanced under no-shading conditions compared to shading treatments. Furthermore, 80% shading negatively impacted plant growth during early stages, as evidenced by alterations in parameters including canopy area (26.47 cm2), diameter (7.98 cm), and index (0.52), as well as Soil Plant Analysis Development (SPAD) values. This led to reduced branch elongation, marketable yield (14.76 g), and non-marketable yield (4.68), along with a decreased dry weight of stems (0.25 g), branches (0.40 g), leaves (0.85 g), and roots (0.44 g). However, marketable leaves from unshaded plants had higher carbon content (34.64%) and lower nitrogen content (2.83%). More frequent harvesting every 2 weeks elevated marketable yield (67.22 g) but suppressed the growth of stems (1.05 g), branches (4.39 g), and roots (1.73 g). Based on these observations, the cultivation of Brazilian spinach in unshaded areas with a biweekly harvesting routine was recommended

Author Biographies

Strayker Muda, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Benyamin Lakitan, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Andi Wijaya, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Susilawati Susilawati, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Zaidan Zaidan, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Yakup Yakup, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

References

(I) Bessonova, V., Ponomaryova, E., Ivanchenko O., 2023. Changes in the morphometric and anatomical parameters of shoots and leaves of Acer platanoides L. after rejuvenation pruning. Ştiinţa Agricolă, 1(1), 25-34. DOI: https://doi.org/10.55505/SA.2023.1.03.

(II) Bollman, M.A., DeSantis, G.E., Waschmann, R.S., Mayer, P.M., 2021. Effects of shading and composition on green roof media temperature and moisture. Journal of environmental management, 281, e111882. DOI: https://doi.org/10.1016/j.jenvman.2020.111882.

(III) Cao, Y., Yang, K., Liu, W., Feng, G., Peng, Y., Li, Z., 2022. Adaptive responses of common and hybrid bermudagrasses to shade stress associated with changes in morphology, photosynthesis, and secondary metabolites. Frontiers in Plant Science, 13, e817105. DOI: https://doi.org/10.3389/fpls.2022.817105.

(IV) Castronuovo, D., Russo, D., Libonati, R., Faraone, I., Candido, V., Picuno, P., Andrade, P., Valentao, P., Milella, L., 2019. Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 254(12), 91-98. DOI: https://doi.org/10.1016/j.scienta.2019.04.077.

(V) Dheeraj, G., Bhagwan, A., Kiran-Kumar, A., Sreedhar, M., Saida, N., Veena J., 2022. Studies on the effect of stem tip pruning and bioregulators on flowering, fruit set and yield of mango (Mangifera indica L.) cv. Banganpalli under high density planting system. The Pharma Innovation Journal, 11(11), 1160-1169.

(VI) Fadilah, L.N., Lakitan, B., Marlina, M., 2022. Effects of shading on the growth of the purple pakchoy (Brassica rapa var. Chinensis) in the urban ecosystem. Agronomy Research, 20(1), 938–950. DOI: https://doi.org/10.15159/ar.22.057.

(VII) Farnisa, M.M., Miller, G.C., Solomon, J.K., Barrios-Masias, F.H., 2023. Floral hemp (Cannabis sativa L.) responses to nitrogen fertilization under field conditions in the high desert. Plos one, 18(5), e0284537. DOI: https://doi.org/10.1371/journal.pone.0284537.

(VIII) Fu, J., Luo, Y., Sun, P., Gao, J., Zhao, D., Yang, P., Hu, T., 2020. Effects of shade stress on turfgrasses morphophysiology and rhizosphere soil bacterial communities. BMC plant biology, 20(92), 1-16. DOI: https://doi.org/10.1186/s12870-020-2300-2.

(IX) Gao, J., Liu, Z., Zhao, B., Dong, S., Liu, P., Zhang, J., 2020. Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agronomy Journal, 112(4), 2768-2776. DOI: https://doi.org/10.1002/agj2.20140.

(X) Gomes, R.F., Arruda, R.D.S., Rosário, I.C.B.D., Andrade, F.L.D.N., Mello, M.N.D., Santos, L.D.S. 2023. Amazon chicory: growing at full sunlight or under shade?. Horticultura Brasileira, 41, e2554. DOI: https://doi.org/10.1590/s0102-0536-2023-e2554.

(XI) Huang, S.P., Kearley, R.E., Hung, K.W., Porter, W.P., 2020. Evaporative water loss simulation improves models’ prediction of habitat suitability for a high-elevation forest skink. Oecologia, 192(2), 657-669. DOI: https://doi.org/10.1007/s00442-020-04597-w.

(XII) Hussain, S., Liu, T., Iqbal, N., Brestic, M., Pang, T. Mumtaz, M., Shafiq, I., Li, S., Wang, L., Gao, Y., Khan, A., Ahmad, I., Allakhverdiev, S.I., Liu, W., Yang, W., 2020. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochemical & Photobiological Sciences, 19(10), 462-472. https://link.springer.com/article/10.1039/c9pp00369j.

(XIII) Ikram, E.H.K., Nasir, W.D.N.W.M., Ikram, N.K.K., 2022. Antioxidant activity and total phenolics content of Brazilian spinach (Alternanthera sissoo) and spinach cultivar in Malaysia. Malaysian Journal of Medicine and Health Sciences, 18(8), 221-229.

(XIV) Jasinski, S., Fabrissin, I., Masson, A., Marmagne, A., Lécureuil, A., Laurence, B., Chardon, F., 2021. Accelerated cell death 6 acts on natural leaf senescence and nitrogen fluxes in Arabidopsis. Frontiers in Plant Science, 11, e611170. DOI: https://doi.org/10.3389/fpls.2020.611170.

(XV) Kesumawati, E., Apriyatna, D., Rahmawati, M., 2020. The effect of shading levels and varieties on the growth and yield of chili plants (Capsicum annuum L.). IOP Conference Series: Earth and Environmental Science. 425, e012080. DOI: https://doi.org/10.1088/1755-1315/425/1/012080.

(XVI) Khawam, G., Waller, P., Gao, S., Edmundson, S., Wigmosta, M.S., Ogden, K., 2019. Model of temperature, evaporation, and productivity in elevated experimental algae raceways and comparison with commercial raceways. Algal Research, 39, e101448. DOI: https://doi.org/10.1016/j.algal.2019.101448.

(XVII) Lakitan, B., Kartika, K., Susilawati, S., Wijaya, A., 2021a. Acclimating leaf celery plant (Apium graveolens) via bottom wet culture for increasing its adaptability to tropical riparian wetland ecosystem. Biodiversitas Journal of Biological Diversity, 22(1), 320-328. DOI: https://doi.org/10.13057/biodiv/d220139.

(XVIII) Lakitan, B., Kartika, K., Widuri, L.I., Siaga, E., Fadilah, L.N., 2021b. Lesser-known ethnic leafy vegetables Talinum paniculatum grown at tropical ecosystem: Morphological traits and non-destructive estimation of total leaf area per branch. Biodiversitas Journal of Biological Diversity, 22(10), 4487-4495. DOI: https://doi.org/10.13057/biodiv/d221042.

(XIX) Li, Y., Jeyaraj, A., Yu, H., Wang, Y., Ma, Q., Chen, X., Sun, H., Zhang, H, Ding, Z, Li, X., 2020. Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to shading. Journal of agricultural and food chemistry, 68(4), 961-974. DOI: https://doi.org/10.1021/acs.jafc.9b05858.

(XX) Liang, X.G., Gao, Z., Shen, S., Paul, M.J., Zhang, L., Zhao, X., Lin, S., Wu, G., Chen, X.M., Zhou, S.L., 2020. Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response. Journal of Plant Physiology, 251, e153194. DOI: https://doi.org/10.1016/j.jplph.2020.153194.

(XXI) Mendoza-Tafolla R.O., Juarez-Lopez, P., Ontiveros-Capurata, R.E., Sandoval-Villa, M., Alia-Tejacal, I., Alejo-Santiago, G., 2019. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 751-756. DOI: https://doi.org/10.15835/nbha47311525.

(XXII) Muda, S.A., Lakitan, B., Wijaya, A., Susilawati, S. 2022. Response of Brazilian spinach (Alternanthera sissoo) to propagation planting material and NPK fertilizer application. Pesquisa Agropecuária Tropical, 52, e72730. DOI: https://doi.org/10.1590/1983-40632022v5272730.

(XXIII) Oliveira, J.S., Brown, H.E., Moot, D.J., 2021. Assessing potato canopy growth and development at the individual leaf level to improve the understanding of the plant source–sink relations. New Zealand Journal of Crop and Horticultural Science, 49(4), 325-346. DOI: https://doi.org/10.1080/01140671.2021.1879878.

(XXIV) Purbajanti, E.D., Setyawati, S., Kristanto, B.A., 2019. Growth, Herbage Yield and Chemical Composition of Talinum Paniculatum (Jacq.). Indian Journal of Agricultural Research, 53(6), 741-744. DOI: http://dx.doi.org/10.18805/IJARe.%20A-411.

(XXV) Raza, M.A., Feng, L.Y., van Der Werf, W., Iqbal, N., Khalid, M.H.B. Chen, Y.K., Wasaya, A., Ahmed, S., Ud Din., A.M., Khan, A., Ahmed, S., Yang, F., Yang, W., 2019. Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system. Scientific Reports, 9(1), e13453. DOI: https://doi.org/10.1038/s41598-019-49858-8.

(XXVI) Shafiq, I., Hussain, S., Raza, M.A., Iqbal, N., Asghar, M.A., Raza, A., Fan, Y., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W., Yang F., 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20(1), 4-23. DOI: https://doi.org/10.1016/S2095-3119(20)63227-0.

(XXVII) Sifuentes-Pallaoro, D., Aquino-Arantes, C.R.D., Ribeiro-Correa, A., Clarete-Camili, E., Barbosa-Coelho, M.D.F., 2020. Effects of humus and shading levels in the production of Lactuca canadensis L. seedlings. Acta Agronómica, 69(1), 32-37. DOI: https://doi.org/10.15446/acag.v68n4.72550.

(XXVIII) Song, Y., Teng, G., Yuan, Y., Liu, T., Sun, Z., 2021. Assessment of wheat chlorophyll content by the multiple linear regression of leaf image features. Information processing in Agriculture, 8(2), 232-243. DOI: https://doi.org/10.1016/j.inpa.2020.05.002.

(XXIX) Tang, W., Guo, H., Baskin, C.C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tap, Q., Zhao, Y., Sun J., 2022. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 11(13), e1688. DOI: https://doi.org/10.3390/plants11131688.

(XXX) Wan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H., Liu, Y., 2020. Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 8, e9316. DOI: https://doi.org/10.7717/peerj.9316.

(XXXI) Wang, J., Shi, K., Lu, W., Lu, D., 2020a. Post-silking shading stress affects leaf nitrogen metabolism of spring maize in southern China. Plants, 9(2), e210. DOI: https://doi.org/10.3390/plants9020210.

(XXXII) Wang, N., Zhao, M., Li, Q., Liu, X., Song, H., Peng, X., Wang, H., Yang, N., Fan, P., Wang, R., Du, R., 2020b. Effects of defoliation modalities on plant growth, leaf traits, and carbohydrate allocation in Amorpha fruticosa L. and Robinia pseudoacacia L. seedlings. Annals of Forest Science, 77(53), 1-15. DOI: https://doi.org/10.1007/s13595-020-00953-1.

(XXXIII) Xu, M.Y., Wu, K.X., Liu, Y., Liu, J., Tang, Z.H., 2020b. Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. Photosynthetica, 58(3), 881-889. DOI: https://doi.org/10.32615/ps.2020.045.

(XXXIV) Xu, Y., Liu, X., Shi, Q., Cheng, F., Zhang, L., Shao, C., Gong, B., 2020a. Pruning length of lateral branches affects tomato growth and yields in relation to auxin-cytokinin crosstalt. Plant Growth Regulation, 92(1), 1-13. DOI: https://doi.org/10.1007/s10725-020-00615-2.

(XXXV) Yamashita, H., Tanaka, Y., Umetsu, K., Morita, S., Ono, Y., Suzuki, T., Takemoto, T., Morita, A., Ikka, T., 2020. Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation. Frontiers in Plant Science, 11, e556476. DOI: https://doi.org/10.3389/fpls.2020.556476.

(XXXVI) Yu, M., Ding, G., Gao, G., Liu, Z., Wang, C., 2020. Double effects of age and environment on resource allocation trade-offs of Salix psammophila in different microtopographic habitats of a sand dune. Journal of plant growth regulation, 39(2), 544-552. DOI: https://doi.org/10.1007/s00344-019-09998-7.

Downloads

Published

2024-06-12

How to Cite

Muda, S., Lakitan, B., Wijaya, A., Susilawati, S., Zaidan, Z., & Yakup, Y. (2024). GROWTH AND YIELD OF BRAZILIAN SPINACH UNDER DIFFERENT SHADING INTENSITIES AND HARVESTING PERIODS IN A TROPICAL LOWLAND URBAN ECOSYSTEM. REVISTA DE AGRICULTURA NEOTROPICAL, 11(2), e8464. https://doi.org/10.32404/rean.v11i2.8464