CARBON STORAGE AND PHYSICAL AND CHEMICAL PROPERTIES OF A MEDIUM-TEXTURED SOIL IN AGRICULTURAL SYSTEMS IN BRAZIL
Visualizações: 191DOI:
https://doi.org/10.32404/rean.v11i3.8465Keywords:
Climate change, Soil quality, Carbon sequestration, Corn+Urochloa ruziziensis intercropAbstract
The objective of this study was to evaluate the physical and chemical properties and carbon storage in different agricultural production systems in medium-texture soils in the subtropical region of Brazil. Soil samples were collected in three management systems: Pasture (PP), no-till (NT), and no-till + Urochloa (NT+U), in addition to a native forest area (NF), in four soil layers up to 0.40 m. Chemical and physical soil analyses were performed. Bulk density and penetration resistance results did not indicate soil compaction in the areas managed after 24 years. The PP area had higher total porosity and microporosity values than the NT and NT+U areas. The PP area had the highest values of the sum of bases and CEC. NT+U and PP areas had the highest TOC contents and carbon storage potential up to the 0-0.40 m layer. The PP area in the 0-0.40 m profile had 52.89%, 72.21%, 79.79%, and 97.08% Mg ha-1 more stocks than the NF area in the four soil layers evaluated. In the 0.20-0.40 m stratum, the NT+U area had StockC values of 11.21 Mg ha-1, which was 17.62% more than the NT area. These results show the potential of grasslands for carbon storage in medium-texture soils under subtropical climates, mainly due to the characteristics of grasslands that can produce significant amounts of biomass constantly deposited in the soil.
References
(I) Ahmed, A., Aftab, S., Hussain, S., Cheema, H.N., Liu, W., Yang, F., Yang, W. 2020. Nutrient Accumulation and Distribution Assessment in Response to Potassium Application under Maize–Soybean Intercropping System. Agronomy, 10(5), 725. DOI: https://doi.org/10.3390/agronomy10050725.
(II) Almeida, B.G, Viana, J.H.M., Teixeira, W.G., Donagemma, G.K. Densidade do solo. In: Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., 2017. Manual de Métodos de Análise de Solo. Brasília/DF: Embrapa, cap 7, p. 65-75.
(III) Appelhans, S.C., Novelli, L.E., Melchiori, R.J.M., Boem, F.H.G., Caviglia, O.P., 2021. Crop sequence and P fertilization effects on soil P fractions under no-tillage. Nutrient Cycling in Agroecosystems, 120(3), 275-288. DOI: https://doi.org/10.1007/s10705-021-10148-3.
(IV) Assmann, J.M., Martins, A.P., Anghinoni, I., Denardin, L.G.O., Nichel, G.H., Costa, S.E.V.A., Silva, R.A.P., Balerini, F., Carvalho, P.C.F., Franzluebbers, A.J., 2017. Phosphorus and potassium cycling in a long-term no-till integrated soybean-beef cattle production system under different grazing intensities insubtropics. Nutrient cycling in agroecosystems. 108(1), 21-33. DOI: https://doi.org/10.1007/s10705-016-9818-6
(V) Bayer, C., Martin-Neto, L., Mielniczuk, J., Pavinato, A., Dieckow, J., 2006. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil and tillage research, 86(2), 237-245. DOI: https://doi.org/10.1016/j.still.2005.02.023.
(VI) Benevenute, P.A., Morais, E.G., Souza, A.A., Vasques, I.C., Cardoso, D.P., Sales, F.R., Severiano, E.C., Homem, B.G.C., Casagrande, D.R., Silva, B.M., 2020. Penetration resistance: An effective indicator for monitoring soil compaction in pastures. Ecological Indicators, 117, 106647.
(VII) Bhatia, K.S., Shukla, K.K., 1982. Effect of continuous application of fertilizers and manure on some physical properties of eroded alluvial soil. Journal of the Indian Society of Soil Science, 30(1), 33-36.
(VIII) Blainski, É.; Tormena, C.A.; Fidalski, J.; Guimarães, R.M.L. 2008., Quantificação da degradação física do solo por meio da curva de resistência do solo à penetração. Revista Brasileira de Ciência do Solo, 32(3), 975-983. DOI: https://doi.org/10.1590/S0100-06832008000300007.
(IX) Bortolini, D., Albuquerque, J.A. 2018. Estimation of the Retention and Availability of Water in Soils of the State of Santa Catarina. Revista Brasileira de Ciência do Solo, 42, e0170250. DOI: https://doi.org/10.1590/18069657rbcs20170250.
(X) Bossio, D.A., Cook-Patton, S.C., Ellis, P.W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R.J., Vom Unger, M., Emmer, I M., Griscom, B.W. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391-398. DOI: https://doi.org/10.1038/s41893-020-0491-z.
(XI) Caviglione, J.H., Kiihl, L.R.B., Caramori, P.H., Oliveira, D. 2000. Cartas climáticas do Paraná. Londrina: IAPAR. CD-ROM.
(XII) Cherubin, M.R., Bordonal, R.O., Castioni, G.A., Guimaraes, E.M., Lisboa, I.P., Moraes, L.A., Menandri, L.M.S., Tenelli, S., Cerri, C.E.P., Karlen, D.L., Carvalho, J.L., 2021. Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163,113315. DOI: https://doi.org/10.1016/j.indcrop.2021.113315.
(XIII) Cordeiro, C.F.D.S., Rodrigues, D.R., Silva, G.F.D., Echer, F.R., Calonego, J.C., 2022. Soil organic carbon stock is improved by cover crops in a tropical sandy soil. Agronomy Journal, 114(2), 1546-1556. DOI: https://doi.org/10.1002/agj2.21019.
(XIV) Costa, A.C.S.D.; Souza Junior, I.G.D.; Canton, L.C., Gil, L.G., Figueiredo, R., 2020. Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity. Revista Brasileira de Ciência do Solo, 44, e0200019. DOI: https://doi.org/10.36783/18069657rbcs20200019.
(XV) D'acqui, L.P., Certini, G., Cambi, M., Marchi, E., 2020. Machinery’s impact on forest soil porosity. Journal of Terramechanics, 91, 65-71. DOI: https://doi.org/10.1016/j.jterra.2020.05.002.
(XVI) Dhaliwal, S.S., Naresh, R.K., Mandal, A., Walia, M.K., Gupta, R.K., Singh, R., Dhaliwal, M.K., 2019. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. Journal of Plant Nutrition, 42(20), 2873-2900. DOI: https://doi.org/10.1080/01904167.2019.1659337.
(XVII) Dionizio, E.A., Pimenta, F.M., Lima, L.B., Costa, M.H., 2020. Carbon stocks and dynamics of different land uses on the Cerrado agricultural frontier. Plos One, 15(11), e0241637. DOI: https://doi.org/10.1371/journal.pone.0241637.
(XVIII) Donagemma, G.K., Freitas, P.L.D., Balieiro, F.D.C., Fontana, A., Spera, S.T., Lumbreras, J.F., Viana, J.H.M., Araujo Filho, J.C., Santos, F.C., Albuquerque, M.R., Macedo, M.C.M., Teixeira, P.C., Amaral, A.J., Bortolon, E., Bortolon, L., 2016. Characterization, agricultural potential, and perspectives for the management of light soils in Brazil. Pesquisa Agropecuária Brasileira, 51, 1003-1020. DOI: https://doi.org/10.1590/S0100-204X2016000900001.
(XIX) During, C., Weeda, W.C., 1973. Some effects of cattle dung on soil properties, pasture production, and nutrient uptake: I. Dung as a source of phosphorus. New Zealand journal of agricultural research, 16(3), 423-430. DOI: https://doi.org/10.1080/00288233.1973.10421125.
(XX) Echeverri, J.L.M., Martinsen, V., Strand, L.T., Zivanovic, V., Cornelissen, G., Mulder, J., 2018. Cation exchange capacity of biochar: An urgent method modification. Science of the total environment, 642, 190-197. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.017.
(XXI) Esper Neto, M., Lara, L.M., Oliveira, S.M., Santos, R.F., Braccini, A.L., Inoue, T.T., Batista, M.A., 2021. Nutrient Removal by Grain in Modern Soybean Varieties. Frontiers in plant science, 12, 615019. DOI: https://doi.org/10.3389/fpls.2021.615019.
(XXII) Falcão, K.S., Monteiro, F.N., Ozório, J.M.B., Souza, C.B.S., Farias, P.G.S., Menezes, R.S., Panachuki, E., Rosset, J.S., 2020. Estoque de carbono e agregação do solo sob diferentes sistemas de uso no Cerrado. Brazilian Journal of Environmental Sciences, 55(2), 242-255. DOI: https://doi.org/10.5327/Z2176-947820200695.
(XXIII) Farhate, C.V.V., Souza, Z.M.D., Cherubin, M.R., Lovera, L.H., Oliveira, I.N.D., Guimarães Júnnyor, W.D.S., La Scala Junior, N., 2022. Soil physics and sugarcane stalk yield induced by cover crops and soil preparation. Revista Brasileira de Ciência do Solo, 46, e0210123. DOI: https://doi.org/10.36783/18069657rbcs20210123.
(XXIV) Ferreira, E.B., Cavalcanti, P.P., Nogueira, D.A., 2018. ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0. https://CRAN.R-project.org/package=ExpDes.pt. (acessado 15 de janeiro de 2021).
(XXV) Firmino, F.H.T., Camêlo, D.L., Nascimento, A.F., Lima, J.R. S., Junior, V.S., Almeida, B.G., Corrêa, M.M., 2022. Genesis of lamellae in sandy soils: A case study in a semi-arid region in NE-Brazil. Geoderma, 406, 115447. DOI: https://doi.org/10.1016/j.geoderma.2021.115447.
(XXVI) Flanagan, P.W., Cleve, K.V., 1983. Ciclagem de nutrientes em relação à decomposição e qualidade da matéria orgânica em ecossistemas de taiga. Canadian Journal of Forest Research, 13(5), 795-817. DOI: https://doi.org/10.1139/x83-110.
(XXVII) Fonseca, C.M., Cantão, V.C.G., Menezes, C.C.E., Marca, S.C., Araújo, G.E.S., Sousa Neta, R., Tavares, R.L.M., Boldrin, P.F., Menezes, J.F.S., Peres, W., 2022. Management of Soil Acidity and Its Relations With Soybean Productivity in Brazilian Savanna. Journal of Agricultural Science, 14(1), 50-59. DOI: https://doi.org/10.5539/jas.v14n1p50.
(XXVIII) Garcia, L., Dubeux Jr, J.C., Sollenberger, L.E., Vendramini, J.M., Dilorenzo, N., Santos, E.R., Jaramillo, D.M., Ruiz-Moreno, M., 2021. Nutrient excretion from cattle grazing nitrogen‐fertilized grass or grass–legume pastures. Agronomy Journal, 113(4), 3110-3123. DOI: https://doi.org/10.1002/agj2.20675.
(XXIX) Gmach, M.R., Dias, B.O., Silva, C.A., Nóbrega, J.C., Lustosa-Filho, J.F., Siqueira-Neto, M., 2018. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Regional, 14, e00178. DOI: https://doi.org/10.1016/j.geodrs.2018.e00178.
(XXX) Gomes, E.T.M., Berbara, R.L.L., Pereira, M.G., Urquiaga, S.S., Tavares, O.C.H., Assunção, S.A., Zonta, E., Sobrinho, N. M.B.A., Garcia, A.C., 2018. Effects of farmed managements in sandy soils on composition and stabilization of soil humic substances. Land Degradation & Development, 29(1),68-79. DOI: https://doi.org/10.1002/ldr.2839.
(XXXI) Júnnyor, W.D.S.G., Diserens, E., Maria, I.C., Araujo-Junior, C.F., Farhate, C.V.V., Souza, Z.M., 2019. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Science of the total environment, 681,424-434. DOI: https://doi.org/10.1016/j.scitotenv.2019.05.009.
(XXXII) Helyar, K.R.V., Porter, W.M., 1989. Soil acidification, its measurement and the processes involved. In: Robson, A.D. Soil acidity and plant growth. Academic Press INC, San Diego, California, p. 61-99.
(XXXIII) Huang, J., Hartemink, A.E., 2020. Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295. DOI: https://doi.org/10.1016/j.earscirev.2020.103295.
(XXXIV) IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. 2021. Clima change 2021, the physical Science bases, ONU – Environment. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SummaryVolume.pdf(acessado 29 de Agosto de 2024).
(XXXV) IUSS. INTERNATIONAL UNION OF SOIL SCIENCE. 2015. Working Group WRB. World Reference Base for Soil Resources (WRB). http://www.fao.org/3/a-i3794e.pdf. (accessed September 26, 2022).
(XXXVI) Lakshmi, G., Okafor, B.N., Visconti, D., 2020. Soil microarthropods and nutrient cycling. In: Environment, climate, plant and vegetation growth. Springer, Cham, p. 453-472.
(XXXVII) Lorenz, K., Lal, R., Ehlers, K., 2019. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations' Sustainable Development Goals. Land Degradation & Development, 30(7),824-838. DOI: https://doi.org/10.1002/ldr.3270.
(XXXVIII) Manrique, L.A., Jones, C.A., Dyke, P.T., 1991. Predicting cation‐exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal, 55(3),787-794. DOI: https://doi.org/10.2136/sssaj1991.03615995005500030026x.
(XXXIX) Marçal, M.F.M., Souza, Z.M.D., Tavares, R.L.M., Farhate, C.V.V., Oliveira, S.R.M., Galindo, F.S. 2021. Predictive Models for Estimating Carbon Stocks in Agroforestry Systems. Forests, 12(9), 1240. DOI: https://doi.org/10.3390/f12091240.
(XL) Martíni, A.F., Favaretto, N., De Bona, F.D., Duraes, M.F., Souza, L.C.P., Goularte, G.D., 2021. Impacts of soil use and management on water quality in agricultural watersheds in Southern Brazil. Land Degradation & Development, 32(2), 975-992. DOI: https://doi.org/10.1002/ldr.3777.
(XLI) Mateus, G.P., Crusciol, C.A.C., Pariz, C.M., Costa, N.R., Borghi, E., Costa, C., Martello, J.M., Castilhos, A.M., Fransluebbers, A.J., Cantarella, H., 2020. Corn intercropped with tropical perennial grasses as affected by sidedress nitrogen application rates. Nutrient Cycling in Agroecosystems, 116(2), 223-244. DOI: https://doi.org/10.1007/s10705-019-10040-1.
(XLII) McCarthy, J.F., Ilavsky, J., Jastrow, J.D., Mayer, L.M., Perfect, E., Zhuang, J., 2008. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19), 4725-4744. DOI: https://doi.org/10.1016/j.gca.2008.06.015.
(XLIII) Mello, F.F.C., Cerri, C.E.P., Bernoux, M., Volkoff, B., Cerri, C.C., 2006. Potential of soil carbon sequestration for the Brazilian Atlantic Region. In: Lal, R., Cerri, C.C., Bernoux, M., Etchevers, J., Cerri, C.E.P. Carbon sequestration in soils of Latin America. New York, Haworth, p. 349-368.
(XLIV) Mendes, K.D.R., Portela, J.C., Gondim, J.E.F., Ribeiro, M.A., Medeiros, J.F.D., Queiroz, G.C.M.D., 2022. Physical, chemical and structural attributes of soil in agroecosystems in the Brazilian Semiarid region. Revista Ciência Agronômica, 53, e20207630. DOI: https://doi.org/10.5935/1806-6690.20220016.
(XLV) Meng, Q., Ma, X., Zhang, J., Yu, Z., 2019. The long-term effects of cattle manure application to agricultural soils as a natural-based solution to combat salinization. Catena, 175, 193-202. DOI: https://doi.org/10.1016/j.catena.2018.12.022.
(XLVI) Mitchard, E.T.A., 2018. The tropical forest carbon cycle and climate change. Nature, 559(7715), 527-534. DOI: https://doi.org/10.1038/s41586-018-0300-2.
(XLVII) Oliveira, N.S., Schiavo, J.A., Lima, M.F., Laranjeira, L.T., Nunes, G.P., Cruz, S.C., 2021. Isotopic variations of carbon and nitrogen and their implications on the conversion of Cerrado vegetation into pasture. Brazilian Journal of Environmental Sciences, 56(2), 266-273. DOI: https://doi.org/10.5327/Z21769478845.
(XLVIII) Oliveira, P.P.A., Berndt, A., Pedroso, A.F., Alves, T.C., Pezzopane, J.R.M., Sakamoto, L.S., Henrique, F.L., Rodrigues, P.H.M., 2020. Greenhouse gas balance and carbon footprint of pasture-based beef cattle production systems in the tropical region (Atlantic Forest biome). Animal, 14(3), 427-437. DOI: https://doi.org/10.1017/S1751731120001822.
(XLIX) Oliveira, P.P.A., Corte, R.R.S., Silva, S.L., Rodriguez, P.H.M., Sakamoto, L.S., Pedroso, A.D.F., Tullio, R.R., Berndt, A., 2018. The effect of grazing system intensification on the growth and meat quality of beef cattle in the Brazilian Atlantic Forest biome. Meat science, 139,157-161. DOI: https://doi.org/10.1016/j.meatsci.2018.01.019.
(L) Ozório, J.M.B., Rosset, J.S., Schiavo, J.A., Souza, C.B.D.S., Farias, P.G.D.S., Oliveira, N.D.S., Menezes, R.S., Panachuki, E., 2020. Physical fractions of organic matter and mineralizable soil carbon in forest fragments of the Atlantic Forest.Revista Ambiente & Água, 15(6), e2601. DOI: https://doi.org/10.4136/ambi-agua.2601.
(LI) R Core Team. R: 2019. A language and environment for statistical computing. Vienna.
(LII) Ramos, F.T., Dores, E.F.D.C., Weber, O.L.D.S., Beber, D.C., Campelo Jr, J.H., Maia, J.C.D.S., 2018. Soil organic matter doubles the cation exchange capacity of tropical soil under no‐till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595-3602. DOI: https://doi.org/10.1002/jsfa.8881.
(LIII) Rayne, N., Aula, L., 2020. Livestock manure and the impacts on soil health: A review. Soil Systems, 4(4), 64. DOI: https://doi.org/10.3390/soilsystems4040064.
(LIV) Reinert, D.J., Albuquerque, J.A., Reichert, J.M., Aita, C., Andrada, M.M.C., 2008. Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciência do Solo, 32(5), 1805-1816. DOI: https://doi.org/10.1590/S0100-06832008000500002.
(LV) Reis, V.R.R., Deon, D.S., Muniz, L.C., Silva, M.B., Rego, C.A.R.M., Garcia, U.C., Cantanhêde, I.S.L., Costa, J.B., 2018. Carbon stocks and soil organic matter quality under different land uses in the maranhense amazon. Journal of Agricultural Science, 10(5), 329-337. DOI: https://doi.org/10.5539/jas.v10n5p329.
(LVI) Ribeiro, R.H., Ibarr, M.A., Besen, M.R., Bayer, C., Piva, J.T., 2020. Managing grazing intensity to reduce the global warming potential in integrated crop–livestock systems under no‐till agriculture. European Journal of Soil Science, 71(6), 1120-1131. DOI: https://doi.org/10.1111/ejss.12904.
(LVII) Rosset, J.S., Lana, M.C., Pereira, M.G., Schiavo, J.A., Rampim, L., Sarto, M.V.M., Seidel, E.P., 2014. Estoque de carbono, propriedades químicas e físicas do solo em sistemas de manejo com diferentes tempos de implantação na Região Oeste do Paraná, Brasil. Semina: Ciências Agrárias, 35(6), 3053-3072. DOI: https://doi.org/10.5433/1679-0359.2014v35n6p3053.
(LVIII) Rosset, J.S., Lana, M.C., Pereira, M.G., Schiavo, J.A., Rampim, L., Sarto, M.V.M., 2016. Frações químicas e oxidáveis da matéria orgânica do solo sob diferentes sistemas de manejo, em Latossolo Vermelho. Pesquisa Agropecuária Brasileira, 51(9), 1529-1538. DOI: https://doi.org/10.1590/S0100-204X2016000900052.
(LIX) Salama, H.S., Nawar, A.I., Khalil, H.E., Shaalan, A.M., 2021. Maize productivity improvement and N use efficiency in irrigated no-tillage system: Effect of cultivation sequence and fertilization management. Plants, 10(7), 1459. DOI: https://doi.org/10.3390/plants10071459.
(LX) Salton, J.C., Mielniczuk, J., Bayer, C., Boeni, M., Conceição, P.C., Fabrício, A.C., Macedo, M.C.M., Broch, D.L., 2008. Agregação e estabilidade de agregados do solo em sistemas agropecuários em Mato Grosso do Sul. Revista Brasileira de Ciência do solo, 32(1): 11-21. DOI: https://doi.org/10.1590/S0100-06832008000100002.
(LXI) Santos, C.A., Rezende, C.D.P., Pinheiro, É.F.M., Pereira, J.M., Alves, B.J., Urquiaga, S., Boddey, R.M., 2019a. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma, 337, 394-401. https://doi.org/10.1016/j.geoderma.2018.09.045.
(LXII) Santos, G.A.A., Moitinho, M.R., Silva, B.O., Xavier, C.V., Teixeira, D D.B., Corá, J.E., Júnior, N.L.S., 2019b. Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO2 emission. Science of the total environment, 686, 413-424. DOI: https://doi.org/10.1016/j.scitotenv.2019.05.398.
(LXIII) Santos, H.G., Jacomine, P.K.T., Anjos, L H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Cunha, T.J.F., Oliveira, J.B., 2018. Sistema Brasileiro de Classificação de Solos. 4.ed. rev. e ampl. Brasília, Embrapa, 353p.
(LXIV) Scheid, D.L., Silva, R.F., Silva, V R., Ros, C.O., Pinto, M.A.B., Gabriel, M., Cherubin, M.R., 2019. Changes in chemical and physical properties of soil in pastures fertilized with liquid swine manure. Scientia Agricola, 77(5), e20190017. DOI: https://doi.org/10.1590/1678-992X-2019-0017.
(LXV) Silva, H.M.S., Dubeux Jr, J.C.B., Silveira, M.L., Santos, M.V.F., Freitas, E.V., Almeida, B.G., 2019. Soil and Root Attributes in Pastures Managed under Different Stocking Rates and Nitrogen Fertilization Levels. Agrosystems, Geosciences & Environment, 2(1), 1-9. DOI: https://doi.org/10.2134/age2018.08.0031.
(LXVI) Silva, J.C.A., Signor, D., Brito, A.M.S.S., Cerri, C.E.P., Camargo, P.B., Pereira, C.F. 2020. Espectroscopia no Infravermelho Próximo e Análise de Componentes Principais para Investigação de Solos Submetidos a Diferentes Usos da Terra na Amazônia Oriental Brasileira. Revista Virtual de Química, 12(1), 51-62.
(LXVII) Sithole, N.J., Magwaza, L.S., Thibaud, G.R., 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil and Tillage Research, 190, 147-156. DOI: https://doi.org/10.1016/j.still.2019.03.004.
(LXVIII) Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, 681p.
(LXIX) Taylor, S.A., Ashcroft, G.L., 1972. Physical edaphology: the physics of irrigated and non-irrigated soils. San Francisco, W.H. Freeman, 532 p.
(LXX) Teixeira P.C., Donagema G.K., Fontana A., Teixeira W.G., 2017. Manual de métodos de análise de solo. 3rd ed., Embrapa, Rio de Janeiro.
(LXXI) Tisdall, J.M., Oades, J.M., 1979. Stabilization of soil aggregates by the root systems of ryegrass. Soil Research, 17(3), 429-441. DOI: https://doi.org/10.1071/SR9790429.
(LXXII) Tisdall, J.M., Oades, J.M., 1982. Organic matter and water‐stable aggregates in soils. Journal of soil science, 33(2), 141-163. DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.
(LXXIII) Torres, J.L.R., Fabian, A.J., Pereira, M.G., 2011. Alterações dos atributos físicos de um Latossolo vermelho submetido a diferentes sistemas de manejo. Ciência e Agrotecnologia, 35(3), 437-445.
(LXXIV) Vadas, P.A., Busch, D.L., Powell, J.M., Brink, G.E., 2015. Monitoring runoff from cattle-grazed pastures for a phosphorus loss quantification tool. Agriculture, Ecosystems & Environment, 199, 124-131. DOI: https://doi.org/10.1016/j.agee.2014.08.026.
(LXXV) Vasques, I.C., Souza, A.A., Morais, E.G., Benevenute, P.A., Silva, L.D.C., Homem, B.G., Casagrande, D.R., Silva, B.M., 2019. Improved management increases carrying capacity of Brazilian pastures. Agriculture, Ecosystems & Environment, 282, 30-39. DOI: https://doi.org/10.1016/j.agee.2019.05.017.
(LXXVI) Vries, W., Breeuwsma, A., 1987. The relationship between soil acidification and element cycling. Pollution of Water, Air and Soil, 35(3), 293-310. DOI: https://doi.org/10.1007/BF00290937.
(LXXVII) Weber, O.B., Silva, M.C.B., Silva, C.F., Sousa, J.A., Taniguch, C.A.K., Santos Garruti, D., Romero, R.E., 2020. Biological and chemical attributes of soils under forest species in Northeast Brazil. Journal of Forestry Research, 31(5), 1959-1973. DOI: https://doi.org/10.1007/s11676-019-00982-1.
(LXXVIII) Yadav, G.S., Das, A., Lal, R., Babu, S., Meena, R.S., Saha, P., Singh, R., Datta, M. (2018) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. Journal of cleaner production, 191, 144-157. DOI: https://doi.org/10.1016/j.jclepro.2018.04.173.
(LXXIX) Yeomans, A., Bremner, J.M., 1988. A rapid and precise method for routine determination of organic carbon in soil. Communication Soil Science Plant Analysis, 19, 1467-1476. DOI: https://doi.org/10.1080/00103628809368027.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.