NITROGEN IMPROVES BIOMASS PRODUCTION AND CHLOROPHYLL SYNTHESIS IN BASIL PLANTS GROWN UNDER SALT STRESS

Visualizações: 62

Authors

DOI:

https://doi.org/10.32404/rean.v11i2.8482

Keywords:

Ocimum basilicum L., Abiotic stress, Fertilization, Plant nutrition

Abstract

Basil (Ocimum basilicum L.), a medicinal and aromatic plant extensively cultivated in the Northeast region of Brazil, encounters growth challenges attributed to the salinity of irrigation water and soil. Nitrogen (N) is a crucial macronutrient employed to mitigate salt stress in plants. Therefore, this study aimed to evaluate the production of phytomass and chlorophyll synthesis in purple basil plants grown under salinity stress and nitrogen fertilization. The experiment was conducted in 2021 under protected environmental conditions at the Center for Agricultural Sciences, Universidade Federal Paraíba, Areia-PB, Brazil. Five levels of salt stress (0.0, 0.80, 2.75, 4.70, and 5.50 dS m-1) and five doses of N (0.00, 58.58, 200.00, 341.42, and 400.00 mg L-1) applied via foliar were studied. The results revealed that foliar fertilization with N increases plant tolerance to salt stress, promoting root fresh and dry mass accumulation at 294.96 and 205.36 mg L-1 and under ECw of 1.14 and 0.5 dS m-1, respectively. Applying 217.39 and 231.30 mg L-1 of N improves the production of stem dry biomass and the shoot/root ratio of basil plants subjected to salinity of 0.5 dS m-1. The electrical conductivity of irrigation water above 0.8 dS m-1 adversely affects biomass production. The salinity at 3.8 to 4.0 dS m-1 stimulated chlorophyll synthesis in purple basil plants. However, the foliar application of N proves to be a strategic approach to counteract these effects, resulting in increased total dry mass production and chlorophyll contents.

Author Biographies

Antônio Veimar da Silva, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

Jackson Nóbrega, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Campus de Campina Grande, Campina Grande, Paraíba, Brasil.

Raimundo Nonato Moraes Costa, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

Toshik Iarley da Silva, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Programa de Pós Graduação em Engenharia Agrícola, Campus de Campina Grande, Campina Grande, Paraíba, Brasil.

Adriano Salviano Lopes, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

João Everthon da Silva Ribeiro, Universidade Federal Rural do Semi-Árido

Universidade Federal Rural do Semi-Árido, Departamento de Ciências Agronômicas e Florestais, Mossoró, Rio Grande do Norte, Brasil.

Ana Carolina Bezerra, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

Edcarlos Camilo da Silva, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

Thiago Jardelino Dias, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Programa de Pós-Graduação em Agronomia, Campus III, Areia, Paraíba, Brasil.

References

(I) Abdelgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., Abuelsoud, W., Pandey, R., Asard, H., Abuelsoud W. 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7, 276. DOI: https://doi.org/10.3389%2Ffpls.2016.00276.

(II) Acosta-Motos, J.R., Ortuño, M.F., Vicente, A.B., Vivancos, P.D., Blanco, M.J.S., Hernandez, J. A. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. DOI: https://doi.org/10.3390/agronomy7010018.

(III) Akrami, M., Arzani, A. 2018. Physiological alterations due to feld salinity stress in melon (Cucumis melo L.). Acta Physiologiae Plantarum, 40, 1-14. DOI: https://doi.org/10.1007/s11738-018-2657-0.

(IV) Alvarenga, C.F.S., Silva, E.M., Nobre, R.G., Gheyi, H.R., Lima, G.S., Silva, L.A. 2019. Morfofisiologia de aceroleira irrigada com águas salinas sob combinações de doses de nitrogênio e potássio. Revista de Ciências Agrárias, 42(1), 194-205. DOI: https://doi.org/10.19084/RCA18215.

(V) Bernardo, S., Mantovani, E.C., Silva, D.D., Soares, A.A. 2019. Manual de irrigação, 9ª ed. Viçosa: UFV.

(VI) Bezerra, I.L., Gheyi, H.R., Nobre, R.G., Lima, G.S., Santos, J.B., Fernandes, P.D. 2018. Interaction between soil salinity and nitrogen on growth and gaseous exchanges in guava. Revista Ambinte & Água, 13(3), e2130. DOI: https://doi.org/10.4136/ambi-agua.2130.

(VII) Bharti, N., Barnawal, D., Wasnik, K., Tewari, S.K., Kalra, A. 2016. Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Applied Soil Ecology, 100, 211-225. DOI: https://doi.org/10.1016/j.apsoil.2016.01.003.

(VIII) Costa, A.R., Rezende, R., Freitas, P.S.L., Gonçalves, A.C.A., Frizzone, J.A. 2015. A cultura da abobrinha italiana (Cucurbita pepo L.) em ambiente protegido utilizando fertirrigação nitrogenada e potássica. Irriga, 20(1), 105-127. DOI: https://doi.org/10.15809/irriga.2015v20n1p105.

(IX) De La Torre-González, A., Navarro-León, E., Blasco, B., Ruiz, M.J.M. 2019. Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.). Acta Physiologiae Plantarum, 42, 2. DOI: https://doi.org/10.1007/s11738-019-2985-8.

(X) Huang, R.D. 2018. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 17(4), 739-746. DOI: https://doi.org/10.1016/S2095-3119(17)61728-3.

(XI) Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., Li, D. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7. 42039. DOI: https://doi.org/10.1038/srep42039.

(XII) Konuşkan, Ö., Gözübenli, H., Atişm İ., Atak, M. 2017. Effects of salinity stress on emergence and seedling growth parameters of some maize genotypes (Zea mays L.). Turkish Journal of Agriculture Food Science and Technology, 5(12), 1668-1672. DOI: https://doi.org/10.24925/turjaf.v5i12.1668-1672.1664.

(XIII) Li, B., Li, G., Kronzucker, H. J., Baluska, F., Shi, W. 2014. Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends in Plant Science. 19(2), 107-114. DOI: https://doi.org/10.1016/j.tplants.2013.09.004.

(XIV) Lima, G.S., Nobre, R.G., Gheyi, H.R., Soares, L.A.A., Silva, A. O. 2015. Produção da mamoneira cultivada com águas salinas e doses de nitrogênio. Revista Ciência Agrônomica, 46(1), 1-10. DOI: https://doi.org/10.1590/S1806-66902015000100001.

(XV) Lima, G.S., Dias, A.S., Soares, L.A.A., Gheyi, H.R., Nobre, R.G., Silva, A.A.R. 2019. Eficiência fotoquímica, partição de fotoassimilados e produção do algodoeiro sob estresse salino e adubação nitrogenada. Revista de Ciências Agrárias, 42(1), 214-225. DOI: https://doi.org/10.19084/RCA18123.

(XVI) Ma, S., Guo, S., Chen, J., Sun, J., Wang, Y., Shu, S. 2020. Enhancement of salt-stressed cucumber tolerance by application of glucose for regulating antioxidant capacity and nitrogen metabolism. Canadian Journal of Plant Science, 100, 253-263. DOI: https://doi.org/10.1139/cjps-2019-0169.

(XVII) Miranda, R.D.S., Gomes-FIlho, E., Prisco, J.T., Alvarez-Pizarro, J.C. 2015. Ammonium improves tolerance to salinity stress in sorghum bicolor plants. Plant Growth Regulation, 78, 121-131. DOI: https://doi.org/10.1007/s10725-015-0079-1.

(XVIII) Munns, R., Gilliham, M. 2015. Salinity tolerance of crops–what is the cost?. New Phytologisty, 208(3), 668-673. DOI: https://doi.org/10.1111/nph.13519.

(XIX) Naveed, M., Sajid, H., Mustafa, A., Niamat, B., Ahmad, Z., Yaseen, M., Kamran, M., Rafique, M., Ahmar, E., Chen, J. T. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (Brassica napus L.) through calcium-fortified composted animal manure. Sustainability, 12(3), 846. DOI: https://doi.org/10.3390/su12030846.

(XX) Neumann, M., Nörnberg, J.L., Leão, G.F.M., Horst, E.H., Figueira, D.N. 2017. Chemical fractionation of carbohydrate and protein composition of corn silages fertilized with increasing doses of nitrogen. Ciência Rural, 47(5), e20160270. DOI: https://doi.org/10.1590/0103-8478cr20160270.

(XXI) Nóbrega, J.S., Gomes, V.R., Soares, L.A.A., Lima, G.S., Silva, A.A.R., Gheyi, H.R., Torres, R.A.F., Silva, F.J.L., Silva, T.I., Costa, F.B., Dantas, M.V., Bruno, R.L.A., Nore, R.G., Sá, F.V.S. 2024. Hydrogen peroxide alleviates salt stress effects on gas exchange, growth, and production of naturally colored cotton. Plants, 13(3), 390. DOI: https://doi.org/10.3390/plants13030390.

(XXII) Novais, R.F., Neves J.C.L., Barros N.F. 1991. Ensaio em ambiente controlado. In: Oliveira, A. J. (ed) Métodos de pesquisa em fertilidade do solo. Embrapa-SEA, Brasília, p. 189-253.

(XXIII) Oliveira, F.A., Medeiros, J.F., Alves, R.C., Linhares, P.S.F., Medeiros, A.M.A., Oliveira, M.K.T. 2014. Interação entre salinidade da água de irrigação e adubação nitrogenada na cultura da berinjela. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(5), 480-486. DOI: https://doi.org/10.1590/S1415-43662014000500003.

(XXIV) Palaretti, L.F., Dalri, A.B., Dantas, G.F., Faria, R.T., Santos, W.F., Santos, M.G. 2015. Produtividade do manjericão (Ocimum basilicum L.) fertirrigado utilizando vinhaça concentrada. Revista Brasileira de Agricultura Irrigada, 9(5), 326-334.

(XXV) Pandolfi, C., Mancusoa, S., Shabala, S. 2012. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environmental and Experimental Botany, 84, 44-51. DOI: https://doi.org/10.1016/j.envexpbot.2012.04.015.

(XXVI) R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

(XXVII) Sá, F.V.S., Brito, M.E.B., Silva, L.A., Moreira, R.C.L., Fernandes, P.D., Figueiredo, L.C. 2015. Fisiologia da percepção do estresse salino em híbridos de tangerineira “Sunki Comum” sob solução hidropônica salinizada. Comunicata Scientiae, 6(4), 463-470. DOI: https://doi.org/10.14295/cs.v6i4.1121.

(XXVIII) Sá, F.V.S., Gheyi, H.R., Lima, G.S., Paiva, E.P., Moreira, R.C.L., Silva, L.A. 2018. Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of west indian 43 cherry. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(3), 158-163. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n3p158-16.

(XXIX) Santos, H.G., Jacomino, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araújo Filho, J.C., Oliveira, J.B., Cunha, T.J.F. 2018. Sistema Brasileiro de Classificação de solo. Embrapa, Brasília.

(XXX) Shah, S.H., Houborg, R., Mccabe, M.F. 2017. Response of chorophyll carotenoid and SPAD - 502 meansurement to salinity and nutriente stress in wheat (Triticum aestivum L.). Agronomy, 7(1), 61.

(XXXI) Silva, E.M., Lima, G.S., Gheyi, H.R., Nobre, R.G., Sá, F.V.S., Souza, L.P. 2018. Growth and gas exchanges in soursop under irrigation with saline water and nitrogen sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(11), 776-781. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n11p776-781.

(XXXII) Silva, T.I., Gonçalves, A.C.M., Melo Filho, J.S., Alves, W.S., Basílio, A.G.S., Figueiredo, F.R.A., Dias, T.J., Blank, A.F. 2019. Echophysiological aspects of Ocimum basilicum under saline stress and salicylic acid. Revista Brasileira de Ciências Agrárias, 14(2), e5633. DOI: https://doi.org/10.5039/agraria.v14i2a5633.

(XXXIII) Souza, G.S., Oliveira, U.C., Silva, J.S., Lima, J.C. 2013. Crescimento, produção de biomassa e aspectos fisiológicos de plantas de Mentha Piperita L. cultivadas sob diferentes doses de fósforo e malhas coloridas. Global Science and Technology, 6(3), 35-44.

(XXXIV) Souza, M.C.M.R., Menezes, A.S., Costa, R.S., Lacerda, C.F., Amorim, A.V., Ximenes, A.I.S. 2019. Saline water on the leaf mineral composition of noni under organic fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(9), 687-693. DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n9p687-693.

(XXXV) Taiz, L., Zeiger, E., Møller, I.M., Murphy, A. 2017. Fisiologia e desenvolvimento vegetal. Porto Alegre, Artmed.

(XXXVI) Viudes, E.B., Santos, A.C.P., 2014: Caracterização fisiológica e bioquímica de artemisia (Artemisia annua L.) submetida a estresse salino. Colloquium Agrariae, 10, 84-91. DOI: https://doi.org/10.5747/ca.2014.v10.n2.a111.

Downloads

Published

2024-04-25

How to Cite

Silva, A. V. da, Nóbrega, J., Costa, R. N. M., Silva, T. I. da, Lopes, A. S., Ribeiro, J. E. da S., … Dias, T. J. (2024). NITROGEN IMPROVES BIOMASS PRODUCTION AND CHLOROPHYLL SYNTHESIS IN BASIL PLANTS GROWN UNDER SALT STRESS. REVISTA DE AGRICULTURA NEOTROPICAL, 11(2), e8482. https://doi.org/10.32404/rean.v11i2.8482