POSITIONING OF WHEAT CULTIVARS AND THEIR RELATION WITH THE NUTRITIONAL QUALITY OF GRAINS
DOI:
https://doi.org/10.32404/rean.v12i1.8498Keywords:
Triticum aestivum, Nutritional traits, Adaptability, Stability, Grain biofortificationAbstract
The objective of this study was to select wheat genotypes with potential to improve grain nutritional quality. An experiment was conducted in 10 environments in the state of Rio Grande do Sul, Brazil. Five wheat genotypes were sown (BRS Parrudo, LG ORO, Mirante, ORS 1403, and TBIO Sinuelo), using a randomized block experimental design with two replications. Grain crude protein, lipid, crude fiber, mineral matter, and non-structural carbohydrate contents were evaluated. The data were subjected to analysis of variance and Tukey's test at a 5% significance level. The method proposed by Annicchiarico and the additive main effects and multiplicative interaction (AMMI) model were used to analyze the adaptability and stability of the genotypes. The genotype LG ORO was identified as the agronomic and nutritional ideotype, demonstrating stability and superiority in crude proteins, lipids, and non-structural carbohydrates in grains.
References
(I) Abdelaleem, M.A.; El-azab, K.F. 2021. Evaluation of flour protein for different bread wheat genotypes. Brazilian Journal of Biology, 81(3), 719-727. DOI: https://doi.org/10.1590/1519-6984.230403.
(II) Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern Italy. Journal of Genetics and Breeding, 46, 269-278. DOI: https://doi.org/10.4236/as.2021.123013.
(III) Bayissa, T.; Mengistu, G.; Gerema, G.; Balcha, U.; Feyisa, H.; Kedir, A.; Legese, Z.; Asegid, D.; Leta, T.; Jobe, T. 2022. Genotype x environment interaction of lowland bread wheat varieties for irrigation in different areas of Oromia. Plant-Environment Interactions, 4(1), 2-10. DOI: http://dx.doi.org/10.1002/pei3.10097.
(IV) Bhatta, M.; Regassa, T.; Rose, D.J.; Baenziger, P.S.; Eskridge, K.M.; Santrad, D.K.; Poudelb, R. 2017. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat. Journal of the Science of Food and Agriculture, 97(1), 5311-5318. DOI: https://doi.org/10.1002/jsfa.8417.
(V) Farooq, M.; Bramley, H.; Palta, J. A.; Siddique, K. H. M. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491-507. DOI: https://doi.org/10.1080/07352689.2011.615687.
(VI) Carvalho, I.R.; Nardino, M.; de Pelegrin, A.J.; Ferrari, M.; Demari, G.H.; Szareski, V.J.; Barbosa, M.H.; de Souza, V.Q. 2016. Path Analysis and Annicchiarico method applied in relation to protein in corn grains. Australian Journal of Basic and Applied Sciences, 10 (9), 300-306.
(VII) Cotrim, M.F.; Farias, F.J.C.; Carvalho, L.P.; Teodoro, L.P.R.; Bhering, L.L.; Teodoro, P.E. 2019. Environmental stratification in the brazilian cerrado on the yield and fiber quality of cotton genotypes. Bioscience Journal, 35(5), 1349-1355. DOI: http://dx.doi.org/10.14393/BJ-v35n5a2019-42259.
(VIII) Flato, G.; Marotzle. J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collons, W.; Cox, P.; Driouch, F.; Emori, S.; Eyring, V.; Forest, C.; Gleckler, P.; Guilyardi, E.; Jakeob, C.; Kattsov, V.; Reason, C.; Rummukainen, M. Evaluation of climate models. In: Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Doschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; Climate Change 2013: the Physical Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambripdge, 741-882.
(IX) Jat, M.L.; Jat, R.K.; Singh, P.; Jat, S.L.; Sidhu, H.S.; Jat, H.S.; Bijarniya, D.; Parihar, C.M.; Gupta, R. 2017. Predicting yield and stability analysis of wheat under different crop management systems across agro-ecosystems in India American. Journal of Plant Science, 8, 1977-2012. DOI: http://dx.doi.org/10.4236/ajps.2017.88133.
(X) Johansson, E.; Branlard, G.; Cuniberti, M.; Flagella, Z.; Hüsken, A.; Nurit, E.; Vazquez, D. 2020. Genotypic and environmental effects on wheat technological and nutritional quality. In: Wheat quality for improving processing and human health, 171–204. DOI: https://doi.org/10.1007/978-3-030-34163-3_8.
(XI) Kaya, Y.; Akcura, M. 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Scinece and Technology, 34(2), 386-393. DOI: https://doi.org/10.1590/fst.2014.0041.
(XII) Kehl, K.; Carvalho, I.R.; Sacon, D.; Rizzardi, M.A.; Langaro, N.C.; Loro, M.V.; Moura, N.B.; Lautenchleger, F. Strategic positioning of soybean based on the agronomic ideotype and on fixed and mixed multivariate models. Brazilian Agricultural Research, v. 57, p. 1-11, 2022. DOI: https://doi.org/10.1590/S1678-3921.pab2022.v57.02702.
(XIII) Lima, G.W.; Silva, C.M.; Mezzomo, H.C.; Casagrande, C.R.; Olivoto, T., Borem, A.; Nardino, M. 2022. Genetic diversity in tropical wheat germplasm and selection via multitrait index. Agronomy Journal, 114(2), 887-899. DOI: https://doi.org/10.1002/agj2.20991.
(XIV) Loro, M.V.; Carvalho, I.R.; Cargnelutti Filho, A.; Hoffmann, J.F.; Kehl, K. 2023. Wheat grain biofortification for essential amino acids. Pesquisa Agropecuária Brasileira, 58, e02860. DOI: https://doi.org/10.1590/S16783921.pab2023.v58.02860.
(XV) Filip, E.; Woronko, K.; Stepién, E.; Czarniecka, N. 2023. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 24(754), 1-33. DOI: https://doi.org/10.3390/ijms24087524.
(XVI) Marcos-Barbero, E.L.; Pérez, P.; Martínez-Carrasco, R.; Arellano, J.B.; Morcuende, R. 2021. Genotypic variability on grain yield and grain nutritional quality characteristics of wheat grown under elevated CO2 and high temperature. Plants, 10(6), 1-23. DOI: https://doi.org/10.3390/plants10061043.
(XVII) Moura, N.B.; Carvalho, I.R.; Kehl, K.; Pradebon, L.C.; Loro, M.V.; Port, E.D.; Sfalcin, I.C.; da Silva, J.A.G.; Bester, A.U. 2022. Strategic positioning of the nutritional profile of wheat grains based on genetic parameters. Tropical and Subtropical Agroecosystems, 25(3), 1-16. DOI: http://dx.doi.org/10.56369/tsaes.4244.
(XVIII) Nasa Power. Prediction of Worldwide Energy Resource Applied Science Program. https://power.larc.nasa.gov/docs/. (Accessed, July 4, 2023).
(XIX) Olivoto, T.; Lúcio, A.D.C.; Silva, J.A.G.; Marchioro, V.S.; Souza, V.Q.; Jost, E. 2019. Mean performance and stability in multi-environment trials I: combining features of AMMI and BLUP techniques. Agronomy Journal, 111(6), 2949-2960. doi:10.2134/agronj2019.03.0220. DOI: https://doi.org/10.2134/agronj2019.03.0220.
(XX) R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2023.
(XXI) Resende, M.D.V.; Alves, R.S. Genetics: breeding strategies and selection methods, 2021. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1131863/genetica-estrategias-de-melhoramento-e-metodos-de-selecao. (Accessed, Jan 23, 2023).
(XXII) Rosa-Campos, A.A.; Rocha, J.E.S.; Borgo, L.A. 2014. Physicochemical analyzes of sixteen brands of enriched type 1 wheat flour, sold in the Federal District. Food Hygiene, 28(230/231), 190-194.
(XXIII) Segatto, T.A.; Carvalho, I.R.; Kehl, K.; Hoffmann, J.F.; Meotti, M.G.L.; Port, E.D.; Loro, M.V.; Sfalcin, I.C.; Pradebon, L.C.; Ourique, R.S. 2022. Adaptability and stability of wheat genotypes for the expression of amino acids in their grains. Santa Catarina Agriculture, 35(3), 82-89. DOI: https://doi.org/10.52945/rac.v35i3.1502.
(XXIV) Segatto, T.A.; Carvalho, I.R.; Port, E.D.; Loro, M.V.; Pradebon, L.C.; Sangiovo, J.P.; Dalla Roza, J.P.; Schulz, A.D.; Kehl, K. 2023. Interrelations between the nutritional and technological traits of wheat grains. Brazilian Journal of Sustainable Agriculture, 13(1), 1-15. DOI: https://doi.org/10.21206/rbas.v13i01.15318.
(XXV) Tozatti, P.; Güldiken, B.; Fleitas, M.C.; Chibbar, R.N.; Hucl, P.; Nickerson, M.T. 2020. The interrelationships between wheat quality, composition, and dough rheology for a range of Western Canadian wheat cultivars. Cereal Chemistry, 97(5), 1010-1025. DOI: https://doi.org/10.1002/cche.10324.
(XXVI) Turek, T.L.; Michelon, L.H.; Tochetto, C.; Coelho, A.E.; Fioreze, S.L. 2018. Water consumption and yield efficiency of wheat plants treated with Trinexapac-ethyl. Journal of Agroveterinary Sciences, 17(2), 198-205. DOI: https://doi.org/10.5965/223811711722018198.
(XXVII) Wrigley, C.; Corke, H.; Seetharaman, K.; Faubion, J. 2016. Encyclopedia of Food Grains. 2. ed. Manhattan: Academic Press.
(XXVIII) Zain, M.Z.M.; Shori, A.B.; Baba, A.S. 2021. Potential functional food ingredients in bread and their health benefits. Biointerface Research in Applied Chemistry, 12, 6533-6542. DOI: https://doi.org/10.33263/BRIAC125.65336542.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.