IMPACTS OF REPLACING THE AMAZON RAINFOREST WITH PASTURE ON SOIL PROPERTIES

Authors

DOI:

https://doi.org/10.32404/rean.v12i1.8879

Keywords:

Brachiaria Brizantha, Brachiaria humidicola, Conversion, Native forest

Abstract

The conversion of the Amazon rainforest into pasture significantly impacts soil quality, affecting biodiversity, biogeochemical cycles, and carbon stocks. Studies indicate a reduction in microbial activity and biomass associated with this transformation. This study investigated the impact of converting forest into pasture on soil attributes in the northern Amazon, specifically at the Canto Verde farm in Iracema, Roraima, Brazil. Three land use systems were analyzed: Native Forest (NF), Brachiaria brizantha (BB), and Brachiaria humidicola (BH). Soil samples were collected at two depths (0-0.10 m and 0.10-0.20 m) in four representative blocks of 1 ha in each system. Chemical, physical, and biochemical properties, and microbial and metabolic coefficients were analyzed. The results were subjected to analysis of variance and the Tukey test (p<0.05). The transition from NF to agricultural use with Brachiaria significantly altered soil attributes. There was an increase in pH in the BB and BH systems and a reduction in total organic carbon and microbial biomass. Basal respiration and dehydrogenase activity decreased, indicating stress in the transformed systems. The BH system showed higher metabolic quotient (qCO2) and lower microbial quotient (qMIC) values, highlighting the adverse effects of converting forests into pastures on soil microbiological activity. The conversion of forests into pastures negatively affects the soil, requiring sustainable agricultural practices.

Author Biographies

Sandra Cátia Pereira Uchôa, Universidade Federal de Roraima

Universidade Federal de Roraima, Câmpus Cauamé, Boa Vista, Roraima, Brasil.

Sasha de Souza Farage, Universidade Federal de Roraima

Universidade Federal de Roraima, Câmpus Cauamé, Boa Vista, Roraima, Brasil.

José Maria Arcanjo Alves, Universidade Federal de Roraima

Universidade Federal de Roraima, Câmpus Cauamé, Boa Vista, Roraima, Brasil.

Carlos Henrique de Lima Matos, Instituto Federal de Educação, Ciência e Tecnologia de Roraima

Instituto Federal de Educação, Ciência e Tecnologia de Roraima, Câmpus Novo Paraíso, Caracaraí, Roraima, Brasil.

Ingridy do Nascimento Tavares, Universidade Federal de Roraima

Universidade Federal de Roraima, Câmpus Cauamé, Boa Vista, Roraima, Brasil.

Valdinar Ferreira Melo, Universidade Federal de Roraima

Universidade Federal de Roraima, Câmpus Cauamé, Boa Vista, Roraima, Brasil.

References

(I) Abdalla, M., Hastings, A., Chadwick, D.R., Jones, D.L., Evans, C.D., Jones, M.B., Rees, R.M., Smith, P., 2018. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems and Environment, 253:62-81. DOI: https://doi.org/10.1016/j.agee.2017.10.023.

(II) Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33:1419-1441. DOI: https://doi.org/10.1007/s11676-022-01475-4.

(III) Araújo, W.F., Monteiro Neto, J.L.L., Sander, C., Albuquerque, J. A.A. de, Viana, T.V.A., Valero, M.A.M., 2024. Atualização da classificação climática de Boa Vista, Roraima, Brasil. Nativa, 12(2):236-240. DOI: https://doi.org/10.31413/nativa.v12i2.16202.

(IV) Arévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A., Baligar, V., 2015. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon. Plos One, 10(7), e0136784. DOI: https://doi.org/10.1371/journal.pone.0136784.

(V) Barbosa, R.I., Ferreira, E.J.G., Castellón, E.G. (Eds.), 1997. Distribuição das chuvas em Roraima. In: Homem, ambiente e ecologia no estado de Roraima. Manaus: INPA, 1:325-335.

(VI) Boateng, R.K., Marek, M.V., 2021. Analysis of the Social-Ecological Causes of Deforestation and Forest Degradation in Ghana: Application of the DPSIR Framework. Forests, 12(4), 1-29. DOI: https://doi.org/10.3390/f12040409.

(VII) Bunemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., Deyn, G., Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., Mader, P., Pulleman, M., Sukkel, J., Groeniger, J.W.V., Brussaard, L., 2018. Soil quality - a critical review. Soil Biology and Biochemistry, 120:105-125. DOI: https://doi.org/10.1016/j.soilbio.2018.01.030.

(VIII) Butzke, A.G., Oliveira, T.K., Paula, A.E.B., Fiuza, S.S., 2020. Fertilidade e carbono orgânico do solo em sistemas agroflorestais de duas décadas compostos de castanheira, cupuaçuzeiro e pupunheira na Amazônia Ocidental. Científica, 48(2), 160-169. DOI: https://doi.org/10.15361/1984-5529.2020v48n2p160-169.

(IX) Cabral, C.E.A., Cabral, L.S., Silva, E.M.B., Carvalho, K.S., Kroth, B.E., Cabral, C.H.A., 2016. Resposta da Brachiaria brizantha cv. Marandu a fertilizantes nitrogenados associados ao fosfato natural reativo. Comunicata Scientiae, 7(1), 66-72. DOI: https://doi.org/10.14295/CS.v7i1.964.

(X) Cravo, M.S., Viégas, I.J.M., Brasil, E.C. (Eds.), 2020. Recomendações de calagem e adubação para o estado do Pará. 2. ed. Belém: Embrapa.

(XI) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, 1997. Manual de métodos de análises de solo. 2. ed. Brasília: Ministério da Agricultura e do Abastecimento.

(XII) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, 2018. Sistema Brasileiro de Classificação de Solos. 4. ed. Brasília: EMBRAPA.

(XIII) Ferreira, D.F., 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6),1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001.

(XIV) Frare, J.C.V., Martins, G.C., Freitas, L., Oliveira, I.A., Ramos, S., 2023. Bioeconomia na Amazônia: importância da matéria orgânica do solo para a manutenção dos sistemas produtivos. Research, Society and Development, 12(2),1-17. DOI: https://doi.org/10.33448/rsd-v12i2.40261.

(XV) Freitas, I. C., Santos, F. C. V., Filho, R. O. C., Correchel, V., Silva, R. B., 2013. Agroecossistemas de produção familiar da Amazônia e seus impactos nos atributos do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(12), 1310–1317. DOI: https://doi.org/10.1590/S1415-43662013001200009.

(XVI) Geisseler, D., Scow, K.M., 2014. Long-term effects of mineral fertilizers on soil microorganisms – A review. Soil Biology and Biochemistry, 75:54-63. DOI: https://doi.org/10.1016/j.soilbio.2014.03.023.

(XVII) Hassler, E., Corre, M.D., Tjoa, A., Damris, M., Utami, S.R., Veldkamp, E., 2015. Soil fertility controls soil-atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences, 12:5831-5852. DOI: https://doi.org/10.5194/bg-12-5831-2015.

(XVIII) Huygens, D., Boeckx, P., Templer, P., Paulino, L., Van Cleemput, O., Oyarzún, C., Godoy, R., 2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geoscience, 1(8), 543-548. DOI: https://doi.org/10.1038/ngeo252.

(XIX) IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA, 2012. Manual Técnico da Vegetação Brasileira. Série Manuais Técnicos em Geociências, número 1. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.

(XX) IMAZOM. INSTITUTO DO HOMEM E MEIO AMBIENTE DA AMAZÔNIA, 2023. Desmatamento na Amazônia atinge o pior semestre em 15 anos. https://imazon.org.br/imprensa/Desmatamento-na-Amazônia-atinge-pior-primeiro-semestre-em-15-anos. (Accessed October 15, 2023).

(XXI) Janusckiewicz, E.R., Raposo, E., Martins, B.M.P.R., Magalhães, M.A., Panosso, A.R., Melo, G.M.P., Ruggieri, A.C., 2019. Atividade enzimática do solo em pastagens de Urochloa manejados sob ofertas de forragem. Boletim de Indústria Animal, 76:1-12. DOI: https://doi.org/10.17523/bia.2019.v76.e1460.

(XXII) Kamau, S., Barrios, E., Karanja, N., Ayuke, F., Lehmann, J., 2017. Soil macrofauna under dominant tree species increases along a soil degradation gradient. Soil Biology and Biochemistry, 112:35-46. DOI: https://doi.org/10.1016/j.soilbio.2017.04.016.

(XXIII) Kaschuk, G., Alberton, O., Hungria, M., 2011. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: Inferences to improve soil quality. Plant and Soil, 338: 467-481. DOI: https://doi.org/10.1007/s11104-010-0559-z.

(XXIV) Leirós, M.C., Trasar-Cepeda, C., Seoane, S., Gil-Sotres, F., 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): General parameters. Soil Biology and Biochemistry, 32(6), 733-745. DOI: https://doi.org/10.1016/S0038-0717(99)00195-9.

(XXV) Lopes, A.S., Guilherme, L.R.G., 2016. A Career Perspective on Soil Management in the Cerrado Region of Brazil. Advances in Agronomy, 137:1-73. DOI: https://doi.org/10.1016/bs.agron.2015.12.004.

(XXVI) Lourente, E.R.P., Silva, E.F. da, Mercante, F.M., Serra, A.P., Peixoto, P.P.P., Sereia, R.C., Ensinas, S.C., Marchetti, M.E., Neto, A.L.N., Tokura, A.M., Cortez, J.W., 2016. Agricultural management systems effect on physical, chemical and microbial soil properties. Australian Journal of Crop Science, 10(5), 683-692. DOI: https://doi.org/10.21475/ajcs.2016.10.05.p7410.

(XXVII) Marchi, S.R., Belle, J.R., Foz, C.H., Ferri, J., Martins, D., 2017. Weeds alter the establishment of Brachiaria brizantha cv. Marandu. Tropical Grasslands-Forrajes Tropicales, 5(2), 85–93. DOI: https://doi.org/10.17138/TGFT(5)85-93.

(XXVIII) Martins, G.C., Ferreira, M.M., Curi, N., Vitorino, A.C.T., Silva, M.L.N., 2006. Campos nativos e matas adjacentes da região de Humaitá (AM): atributos diferenciais do solo. Ciência Agrotécnica, Lavras, 30(2), 221-227. DOI: https://doi.org/10.1590/S1413-70542006000200005.

(XXIX) Mbuthia, L.W., Martínez, V.C., Debruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, M., Walker, F., 2015. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology and Biochemistry, 89:24-34. DOI: https://doi.org/10.1016/j.soilbio.2015.06.016.

(XXX) Muchane, M.N., Sileshi, G.E., Gripenberg, S., Jonsson, M., Pumariño, L., Barrios, E., 2020. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystems & Environment, 295:1-31. DOI: https://doi.org/10.1016/j.agee.2020.106899.

(XXXI) Nanzer, M.C., Ensinas, S.C., Barbosa, G.F., Barreta, P.G.V., Oliveira, T.P. de, Silva, J.R.M., Paulino, L.A., 2019. Estoque de carbono orgânico total e fracionamento granulométrico da matéria orgânica em sistemas de uso do solo no Cerrado. Revista de Ciências Agroveterinárias, 18(1), 136-145. DOI: https://doi.org/10.5965/223811711812019136.

(XXXII) Nunez, J., Arevalo, A., Karwat, H., Egenolf, K., Miles, J., Chirinda, N., Cadisch, G., Rasche, F., Rao, I., Subbarao, G., Arango, J., 2018. Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil, 426:401–411. DOI: https://doi.org/10.1007/s11104-018-3626-5.

(XXXIII) Rashti, M.R., Nelson, P.N., Lan, Z., Su, N., Esfandbod, M., Liu, X., Goloran, J., Zhang, H., Chen, C., 2024. Sugarcane cultivation altered soil nitrogen cycling microbial processes and decreased nitrogen bioavailability in tropical Australia. Journal of Soils and Sediments, 24(2), 946-955. DOI: https://doi.org/10.1007/s11368-023-03704-7.

(XXXIV) Rego, C.A.R.M., Oliveira, P.S.R., Muniz, L.C., Rosset, J.S., Mattei, E., Costa, B.P., Pereira, M.G., 2023. Chemical, physical, and biological properties of soil with pastures recovered by integration crop-livestock system in Eastern Amazon. Revista Brasileira de Ciência do Solo, 47:1-16. DOI: https://doi.org/10.36783/18069657rbcs20220094.

(XXXV) Santos, R.A.F., Soares, S.C., Silva, T.C., Sousa, G.G., Zuliani, D.Q., Blum, S.C., 2021. Queimada e usos do solo na atividade e biomassa microbiana. Revista em Agronegócio e Meio Ambiente, 14(2):1-13 DOI: https://doi.org/10.17765/2176-9168.2021v14Supl.2.e8742.

(XXXVI) Schneider, M., Marques, A.A.B., Peres, 2021. Brazil’s Next Deforestation Frontiers. Tropical Conservation Science, 14:1-9. DOI: https://doi.org/10.1177/19400829211020472.

(XXXVII) Souza, E.S., Fernandes, A.R., Braz, A. M.S., Oliveira, F.J., Alleoni, L.R.F., Campos, M.C.C., 2018. Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. Soil, 4(3), 195-212. DOI: https://doi.org/10.5194/soil-4-195-2018.

(XXXVIII) Stieven, A.C., Oliveira, D.A., Santos, J.O., Wruck, F.J., Campos, D.T.S., 2014. Impacts of integrated crop-livestock-forest on microbiological indicator of soil. Revista Brasileira de Ciências Agrárias, 9(1), 53-58. DOI: https://doi.org/10.5039/agraria.v9i1a3525.

(XXXIX) Tanaka, K.S., Crusciol, C.A.C., Soratto, R.P., Momeso, L., Costa, C.H.M., Franzluebbers, A.J., Junior, A.O., Calonego, J.C., 2019. Nutrients released by Urochloa cover crops prior to soybean. Nutrient Cycling in Agroecosystems, 113:267-281. DOI: https://doi.org/10.1007/s10705-019-09980-5.

(XL) Tedesco, M.J., Gianello, C., Bissani, C., Bohnen, H. and Volkweiss, S.J., 1995. Análise de solo, plantas e outros materiais. [Analysis of soil, plants and other materials.] 2nd Edition, Departamento de Solos da Universidade Federal do Rio Grande do Sul, Porto Alegre, 174.

(XLI) Tegegn, A., Kyalo, M., Mutai, C., Hanson, J., Asefa, G., Djikeng, A., Ghimire, S., 2019. Genetic diversity and population structure of Brachiaria brizantha (A.Rich.) Stapf accessions from Ethiopia. African Journal of Range and Forage Science, 36(2), 129-133. DOI: https://doi.org/10.2989/10220119.2019.1573760.

(XLII) Villarino, S.H., Studdert, G.A., Baldassini, P., Cendoya, M.G., Ciuffoli, L., Mastrágelo, M., Piñeiro, G., 2016. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of the Total Environment, 575:1056-1065 DOI: https://doi.org/10.1016/j.scitotenv.2016.09.175.

(XLIII) Winck, B.R., Vezzani, F.M., Dieckow, J., Favaretto, N., Molin, R., 2014. Carbono e nitrogênio nas frações granulométricas da matéria orgânica do solo, em sistemas de culturas sob plantio direto. Revista Brasileira de Ciência do Solo, 38(3), 80-989. DOI: https://doi.org/10.1590/S0100-06832014000300030.

(XLIV) Yada, M.M., Mingotte, F.L.C., Melo, W.J., Melo, G.P., Melo, V.P., Longo, R.M., Ribeiro, A.Í., 2015. Atributos Químicos e Bioquímicos em Solos Degradados por Mineração de Estanho e em Fase de Recuperação em Ecossistema Amazônico. Revista Brasileira de Ciência do Solo, 39(3), 714-724. DOI: https://doi.org/10.1590/01000683rbcs20140499.

(XLV) Yeomans, J.C., Bremner, J.M., 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467-1476. DOI: https://doi.org/10.1080/00103628809368027.

(XLVI) Zeferino, L.B., Lustosa Filho, J.F., Santos, A.C., Cerri, C.E. P., Oliveira, T.S., 2023. Soil carbon and nitrogen stocks following forest conversion to long-term pasture in Amazon rainforest-Cerrado transition environment. Catena, 231:1-12. DOI: https://doi.org/10.1016/j.catena.2023.107346.

(XLVII) Zhou, H., Zhang, D., Juang, Z., Sun, P., Xiao, H., Yuxin, W., Chen, J. 2019. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 651(2), 2281-2291. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.152.

Downloads

Published

2025-02-11

How to Cite

Pereira Uchôa, S. C., de Souza Farage, S., Arcanjo Alves, J. M., de Lima Matos, C. H., do Nascimento Tavares, I., & Ferreira Melo, V. (2025). IMPACTS OF REPLACING THE AMAZON RAINFOREST WITH PASTURE ON SOIL PROPERTIES. REVISTA DE AGRICULTURA NEOTROPICAL, 12(1). https://doi.org/10.32404/rean.v12i1.8879