SOIL ERODIBILITY IN AREAS UNDER CITRUS (CITRUS SINENSIS L. OSBECK) AND FOREST IN RONDÔNIA, BRAZIL

Visualizações: 140

Authors

DOI:

https://doi.org/10.32404/rean.v10i4.7683

Keywords:

Conversion, Soil management, Erosive process

Abstract

Few studies have studied soil erodibility in areas that have undergone conversion processes from native forest to agricultural areas, especially in agricultural frontier regions. The present study aimed to evaluate soil erodibility in areas under citrus (Citrus sinensis L. Osbeck) and forest, using multivariate statistics and geostatistics in areas under different uses in Southern Rondônia, Brazil. A 42 × 30 m grid with regular spacing between sample points of 6 × 6 m was established for the studied native forest and citrus areas at depths of 0.00-0.20 m. At each sampling point, samples with preserved sod structure were collected at the evaluated depth for determination of soil texture and organic carbon, totaling 288 samples in the two studied areas. In the results it was observed that the area cultivated with citrus and under forest presented a greater predisposition of the soil to suffer erosion interril (Kiwepp), the citrus area also presented a greater susceptibility of the soil to suffer erosion in furrows (Krwepp), on the other hand, this area showed high values of critical shear stress, a fact that signals the resistance of the soil to the beginning of the erosive process. On the other hand, the forest area showed a greater predisposition to suffer erosion (K-factor), a fact possibly linked to the high values of silt and sand, which favored the present erodibility conditions.

Author Biographies

Fernando Gomes de Souza, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Murupu, Boa Vista, Roraima, Brasil.

José Vagner Silva, Instituto Federal de Educação, Ciência e Tecnologia de Rondônia

Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Campus Colorado do Oeste, Colorado do Oeste, Rondônia, Brasil. 

 

Taismara Inglesia Sampaio , Instituto Federal de Educação, Ciência e Tecnologia de Rondônia

Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Campus Colorado do Oeste, Colorado do Oeste, Rondônia, Brasil. 

Janaina Teixeira de Morais, Instituto Federal de Educação, Ciência e Tecnologia de Rondônia

Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Campus Colorado do Oeste, Colorado do Oeste, Rondônia, Brasil. 

Valdir Moura, Instituto Federal de Educação, Ciência e Tecnologia de Rondônia

Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Campus Colorado do Oeste, Colorado do Oeste, Rondônia, Brasil. 

Alan Ferreira Leite de Lima, Universidade Federal do Amazonas

Universidade Federal do Amazonas, Campus Manaus, Manaus, Amazonas, Brasil. 

Wildson Benedito Mendes Brito , Universidade Federal do Amazonas

Universidade Federal do Amazonas, Campus Manaus, Manaus, Amazonas, Brasil. 

Elyenayra Nogueira Pinheiro , Universidade Federal do Amazonas

Universidade Federal do Amazonas, Campus Humaitá, Humaitá, Amazonas.

 

Robson Vinício dos Santos, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Centro de Ciências Agrárias, Campus Areia, Areia, Paraíba, Brasil.

 

Milton César Costa Campos, Universidade Federal da Paraíba

Universidade Federal da Paraíba, Campus Areia, Areia, Paraíba, Brasil. 

 

References

(I) Albuquerque, J.A., Cassol, E.A., Reinert, D.J. 2000. Relação entre a erodibilidade em entressulcos e estabilidade dos agregados. Revista Brasileira de Ciência do Solo, 24(1), 141-151. DOI: https://doi.org/10.1590/S0100-06832000000100016

(II) Alencar, N.M., Melo, J.C., Santos, A.C., Cunha, O.F.R, Paula Neto, J.J. 2016. Distribuição espacial das propriedades do solo, produção do capim-marandu com a intensidade de pastejo. Revista Engenharia na Agricultura-Reveng, 24(4), 338-349. DOI: https://doi.org/10.13083/reveng.v24i4.602.

(III) Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G. 2013. Köppen’s climate cl.assification map for Brazil. Meteorologische Zeitschrif, 22,711–728. DOI: https://doi.org/ 10.1127/ 0941-2948/2013/ 0507.

(IV) Aragão, L.E., Shimabukuro, Y.E. 2010. The incidence of fire in Amazonian forests with implications for REDD. Science, 328, 1275-1278. DOI: https://doi.org/10.1126/science.1186925.

(V) Berenguer, E, Ferreira, J, Gardner, T.A., Aragão, L.E.O.C. Camargo, P.B., Cerri, C.E., Durigan, M., Oliveira Junior, R.C., Vieira, I.C.G., Barlow, J. 2014. A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20, 3713–3726. DOI: https://doi.org/10.1111/gcb.12627.

(VI) Bertol, I., Guadagnin, J.C., Casol, P.C., Amaral, A.J., Barbosa, F.T. 2004. Perdas de fósforo e potássio por erosão hídrica em um Inceptisol sob chuva natural. Revista Brasileira de Ciência do Solo, 28(3), 485-494. DOI: https://doi.org/10.1590/S0100-06832004000300010.

(VII) Brito, W.B.M., Campos, M.C.C., Brito Filho, E.G., Lima, A.F.L., Cunha, J.M., Silva, L.I., Mantovanelli, B.C. 2020. Dynamics and spatial aspects of erodibility in Indian Black Earth in the Amazon, Brazil. Catena, 185, 104281. DOI: https://doi.org/10.1016/j.catena.2019.104281.

(VIII) Burak, D.L., Passos, R.R., Andrade, F.V. 2012. Variabilidade espacial de atributos químicos do solo sob cafeeiro Conilon: Relação com textura, matéria orgânica e relevo. Bragantia, 71(4), 538–547. DOI: https://doi.org/10.1590/S0006-87052012000400012.

(IX) Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E. 1994. Field-scale variability of soil properties in Central Iowa. Soil Science Society of America Journal, 58, 1501-1511. DOI: https://doi.org/10.2136/sssaj1994.03615995005800050033x

(X) Castro, W.J., Lemke-de-Castro, M.L., Lima, J.O., Oliveira, L.F.C, Rodrigues, C., Figueiredo, C.C. 2011. Erodibilidade de solos do cerrado goiano. Revista em Agronegócios e Meio Ambiente, 4(2), 305-320. DOI: https://doi.org/10.17765/2176-9168.2011v4n2p%25p

(XI) Dalchiavon, F.C., Carvalho, M.P., Andreotti, M., Montanari, R. 2012. Variabilidade espacial de atributos da fertilidade de um Latossolo Vermelho Distroférrico sob sistema plantio direto. Revista Ciência Agronômica, 43(3), 453–461. DOI: https://doi.org/10.1590/S1806-66902012000300006.

(XII) Dechen, S.C.F., Telles, T.S., Guimaraes, M.F., Maria, I.C., 2015. Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo. Bragantia, 74(2), 224-233. DOI: http://dx.doi.org/10.1590/1678-4499.0363.

(XIII) Flanagan, D.C., Livingston, S.J. 1995. USDA - Water erosion prediction project: WEEP user summary. West Lafayette: National Soil Research Laboratory & USDA - Agricultural Research Service, 25-26.

(XIV) Freitas, L, Casagrande, J.C., Oliveira, I.A., Campos, M.C.C., Silva, L.S. 2015. Técnicas multivariadas na avaliação de atributos de um Latossolo vermelho submetido a diferentes manejos. Brazilian Journal of Agricultural Sciences, 10(1), 17-26. DOI: http://dx.doi.org/10.5039/agraria.v10i1a3928.

(XV) Frozzi, J.C., Cunha, J.M., Campos, M.C.C., Bergamin, A.C., Brito, W.B.M., Fraciscon, U., Silva, D.M.P., Lima, A.F.L., Brito Filho, E.G. 2020. Physical attributes and organic carbon in soils under natural and anthropogenic environments in the South Amazon region. Environmental Earth Sciences, 79, 251-266. DOI: https://doi.org/10.1007/s12665-020-08948-x.

(XVI) Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C. 2007. Análise multivariada de dados. 5.ed. Bookman, Porto Alegre.

(XVII) Hassane, A.L., Campos, M.C.C., Santos, L.A.C., Silva, D.M.P., Santos, R.V., Cunha, J.M., Brito, W.B.M., Lima, A.F.L., Brito Filho, E.G., Oliveira, F.P. 2023. Estimating soil erodibility in areas under natural and anthropped environments in the southern region of Amazonas State. Bragantia, 82, 1-13. DOI: https://doi.org/10.1590/1678-4499.20230042.

(XVIII) Huang, T.C.C., Lo, K.F.A. 2015. Effects of Land Use Change on Sediment and Water Yields in Yang Ming Shan National Park, Taiwan. Environments, 2(1), 32-42. DOI: https://doi.org/10.3390/environments2010032.

(XIX) IUSS Working Group WRB. 2022. World reference base for soil resources 2022, update 2022: International soil classification system for naming soils and creating legends for soil maps. FAO, Rome. (World Soil Resources Reports, 106)

(XX) Lima, A.F.L., Campos, M.C.C., Enck, B.F., Simões, W.S., Araújo, R.M., Santos, L.A.C., Cunha, J.M. 2022. Atributos físicos do solo em áreas sob conversão floresta / pastagem no norte de Rondônia, Brasil. Monitoramento e avaliação ambiental, 194, 1-27. DOI: https://doi.org/10.22533/at.ed.4732219054.

(XXI) Lima, A.F.L., Campos, M.C.C., Martins, T.S., Brito, W.B.M., Souza, F.G., Cunha, J.M., Simões, W.S., Oliveira, F.P. 2020. Estimativa da erodibilidade do solo em áreas sob conversão de floresta em ambientes cultivados na região sul do Amazonas. Revista Brasileira de Geografia Física, 13(7), 3336-3350. DOI: https://doi.org/10.26848/rbgf.v13.07.p3336-3350.

(XXII) Lourenço, I.H., Brito Filho, E.G., Campos, M.C.C., Cunha, J.M., Brito, W.B.M, Soares, M.D.R. 2020. Avaliação da erodibilidade do solo em áreas de terra preta arqueológica com pastagem e floresta nativa no sul do Amazonas. Acta Iguazu, 9(1), 90-98. DOI: https://doi.org/10.48075/actaiguaz.v9i1.22028

(XXIII) Martins, S.G, Avanzi, J.C., Silva, M.L.N., Curi, N., Fonseca, S. 2011. Erodibilidade do solo nos tabuleiros costeiros. Pesquisa Agropecuária Tropical, 41(3), 322-327. DOI: https://doi.org/10.5216/pat.v41i3.9604.

(XXIV) Miqueloni, D.P., Bueno, C.R.P. 2011. Análise multivariada e variabilidade espacial na estimativa da erodibilidade de um Argissolo Vermelho-amarelo. Revista Brasileira de Ciência do Solo, 35(6), 2175-2182. DOI: https://doi.org/10.1590/S0100-06832011000600032.

(XXV) Moura, N.G., Lees, A.C., Andretti, C.B., Davis, B.J., Solar, R.R., Aleixo, A., Barlow, J., Ferreira, J., Gardner, T.A. 2013. Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biological Conservation, 167, 339-348. DOI: https://doi.org/10.1016/j.biocon.2013.08.023.

(XXVI) Oliveira, J.F., Griebeler, N.P., Correchel, V., Silva, V.C. 2009. Erodibilidade e tensão crítica de cisalhamento em solos de estradas não pavimentadas. Revista Brasileira de Engenharia Agrícola e Ambiental, 13, 955-960. DOI: https://doi.org/10.1590/S1415-43662009000700019.

(XXVII) Robertson, G.P. 2016. GS+: geostatistics for the environmental sciences. Plainwell: Gamma

(XXVIII) Sá, M.A.C., Lima, J.M., Curi, N., Massaroto, J.A, Marques, J.J.G.S.M. 2004. Estimativa da erodibilidade pela desagregação por ultra-som e atributos de solos com horizonte B textural. Pesquisa Agropecuária Brasileira, 39(7), 691-699. DOI: https://doi.org/10.1590/S0100-204X2004000700011

(XXIX) Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Cunha, T.J.F. 2018. Sistema Brasileiro de Classificação do Solo, 3rd ed. Embrapa.

(XXX) Santos, K.E.L., Bernardi, A.D.C., Bettiol, G.M., Crestana, S. 2017. Geoestatística e geoprocessamento na tomada de decisão do uso de insumos em uma pastagem/geostatistics and gis in the decision making of the use of inputs in a pasture. Revista Brasileira de Engenharia de Biossistemas, 11(3), 294-307. DOI: http://dx.doi.org/10.18011/bioeng2017v11n3p294-307.

(XXXI) Schick, J, Bertol, I, Cogo, N.P., Paz González, A., Barbosa, F.T. 2014. Erodibilidade de um Cambissolo Húmico em Lages, SC. Revista Brasileira de Ciência do Solo, 1906-1917.

(XXXII) Silva, L.I., Campos, M.C.C., Brito, W.B.M., Cunha, J.M., Lima, A.F.L., Santos, L.A.C., Hassane, A.L. 2021. Spatial variability of soil erodibility in pastures and forest areas in the municipality of Porto Velho, Rondônia. Ambiente e Água. Revista Interdisciplinar de Ciências Aplicadas, 16(6), 1-23. DOI: https://doi.org/10.4136/ambi-agua.2750.

(XXXIII) Silva, L.I., Campos, M.C.C., Brito, W.B.M., Cunha, J.M., Lima, A.F.L., Santos, L.A.C., Hassane, A.L. 2021. Spatial variability of soil erodibility in pastures and forest areas in the municipality of Porto Velho, Rondônia. Revista Ambiente e Agua, 16, 1-23. DOI: https://doi.org/10.4136/ambi-agua.2750.

(XXXIV) Souza Júnior, C.M., Siqueira, J.V., Sales, M.H., Fonseca, A.V., Ribeiro, J.G., Numata, I., Cochrane, M.A., Barber, C.P., Roberts, D.A., Barlow, J. 2013. Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sensing, 5(11), 5493-5513. DOI: https://doi.org/10.3390/rs5115493.

(XXXV) Souza, F.G., Campos, M.C.C., Oliveira, E.S., Lima, A.F.L., Pinheiro, E.N., Cunha, J.M., Martins, T.S., Silva, D.M.P., Oliveira, F.P. 2023. Impacts of native forest conversion on soil erodibility in areas of amazonic species cultivation. Applied Ecology and Environmental Research, 21, 21-39. DOI: http://doi.org/10.15666/aeer/2101_021039.

(XXXVI) Souza, F.G., Campos, M.C.C., Pinheiro, E.N., Lima, A.F.L., Brito Filho, E.G., Cunha, J.M., Santos, E.A.N., Brito, W.B.M., 2020. Aggregate stability and carbon stocks in Forest conversion to different cropping systems in Southern Amazonas, Brazil. Carbon Management, 11, 81-96. DOI: https://doi.org/10.1080/17583004.2019.1694355.

(XXXVII) Souza, F.G., Campos, M.C.C., Oliveira, E.S., Lima, A.F.L., Pinheiro, E.N., Cunha, J.M., Martins, T.S., Silva, D.M.P., Oliveira, F.P. 2023. Impacts of native forest conversion on soil erodibility in areas of amazonic species cultivation. Applied Ecology and Environmental Research, 21, 21-39. DOI: http://dx.doi.org/10.15666/aeer/2101_021039

(XXXVII) Spss Inc., 2001. Statistical Analysis Using SPSS. Chicago.

(XXXIX) Statsoft Inc 7.0., 2004. Statistica (data analysis software system). USA.

(XL) Teixeira, P.C., Donagemma, G.K., Wenceslau, A.F., Teixeira, G. 2017. Manual de Métodos de Análise de Solo. 3. ed. Embrapa Solos, Rio de Janeiro. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo. (accessed July 16, 2023).

(XLI) USDA. UNITED STATES DEPARTMENT OF AGRICULTURE. 1983. National Soil Survey Handbook n. 430. Washington, DC: USDA.

(XLII) Wang, X., Zhao, X., Zhang, Z., Yi, L., Zuo, L., Wen, Q., Liu, F., Xu, J, Hu, S, Liu, B. 2016. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena, 137, 256-268. DOI: https://doi.org/10.1016/j.catena.2015.10.004.

(XLIII) Warrick, A.W., Nielsen, D.R. 1980. 13- Spatial variability of soil physical properties in the field. In: Hillel, D. (Ed.) Applications of soil physics. Applications of Soil Physics. Academic Press, p. 319-.344. DOI: https://doi.org/10.1016/B978-0-12-348580-9.50018-3.

(XLIV) Wischmeier, W.H., Johnson, C.B., Cross, B.V. 1971. A soil 99erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189-193.

(XLV) Yeomans, J.C., Bremner, J.M. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communication in Soil Science and Plant Analysis, 19, 1467-1476. DOI: https://doi.org/10.1080/00103628809368027.

Downloads

Published

2023-12-31

How to Cite

Souza, F. G. de, Silva, J. V., Sampaio , T. I., Morais, J. T. de, Moura, V., Lima, A. F. L. de, … Campos, M. C. C. (2023). SOIL ERODIBILITY IN AREAS UNDER CITRUS (CITRUS SINENSIS L. OSBECK) AND FOREST IN RONDÔNIA, BRAZIL. REVISTA DE AGRICULTURA NEOTROPICAL, 10(4), e7683. https://doi.org/10.32404/rean.v10i4.7683

Most read articles by the same author(s)