PHOTOSYNTHETIC EFFICIENCY OF TOMATO PLANTS SUBMITTED TO CALCIUM SILICATE APPLICATION
Visualizações: 733DOI:
https://doi.org/10.32404/rean.v7i4.4495Resumo
The objective was to evaluate the effect of calcium silicate on the chlorophyll content and gas exchange of two tomato hybrids. The design used was in randomized blocks in a 2x5 factorial scheme, with four replications. The first factor was composed of two tomato hybrids: Ivety and Natália, and the second factor was composed of five doses of calcium silicate (0, 150, 300, 450, and 600 kg ha-1), applied to the substrate before planting the seedlings. Gas exchange: net CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance (gs), internal CO2 concentration (Ci), water-use efficiency (WUE), intrinsic efficiency water use (iWUE), and instant carboxylation efficiency (ACi); SPAD index and the levels of chlorophylls a, b, and total were evaluated. The analyzes were performed in the stages of first flowering (17 days after transplanting - DAT), full flowering (58 DAT), and full fruiting (78 DAT). At 17 DAT, no difference was observed for gas exchange variables and photosynthetic pigments. The application of calcium silicate reduced gas exchange and photosynthetic pigments at 58 DAT. The hybrid Natália had the highest A, WUE, iWUE, and ACi at 78 DAT. However, the hybrid Ivety in the same growth stage, in full fruiting, was superior only for the internal concentration of CO2 and SPAD index, with no difference for photosynthetic pigments.Referências
(I) Abdelaal, K.A.A., Mazrou, Y.S.A., Hafez, Y.M., 2020. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants, 9(6), 733. DOI: https://doi.org/10.3390/plants9060733.
(II) Adams, W.W., Stewart, J.J., Cohu, C.M., Muller, O., Demmig-Adams, B., 2016. Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Frontiers in Plant Science, 7(1), 1-18. DOI: https://doi.org/10.3389/fpls.2016.01026.
(III) Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2013. Koppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507.
(IV) Araújo, H.S., Cardoso, A.I.I., Oliveira Júnior, M.X., Magro, F.O., 2015. Teores e extração de macronutrientes em abobrinha-de-moita em função de doses de potássio em cobertura. Revista Brasileira de Ciências Agrárias, 10(3), 389-395. DOI: https://doi.org/10.5039/agraria.v10i3a4937.
(V) Cruz, C.D., 2013. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271-276. DOI: https://doi.org/10.4025/actasciagron.v35i3.21251.
(VI) Dalastra, G.M., Echer, M.M., Coutinho, P.W.R., Klosowski, E.S., 2018. Características produtivas de cultivares de tomateiro italiano em função de tipos de poda. Scientia Agraria Paranaensis, 17(4), 398-404.
(VII) Driever, S.M., Lawson, T., Andralojc, P.J., Raines, C.A., Parry, M.A.J., 2014. Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. Journal of Experimental Botany, 65(17), 4959-4973. DOI: https://doi.org/10.1093/jxb/eru253.
(VIII) Echer, M.M., Guimarães, V.F., Inagaki, A.M., Dalastra, G.M., Hachmann, T.L., 2020. Photosynthetic pigments and gas exchange in red and green cabbage under no-tillage and conventional systems. Revista Ciência Agronômica, 51(2), 1-10. DOI: https://doi.org/10.5935/1806-6690.20200037.
(IX) Ehleringer, J., Björkman, O., 1977. Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2, and O2 concentration. Plant Physiology, 59(1), 86-90. DOI: https://doi.org/10.1104/pp.59.1.86.
(X) Ferraz, R.L.S., Melo, A.S., Suassuna, J.F., Brito, M.E.B., Fernandes, P.D., Nunes Junior, E.S., 2012. Trocas gasosas e eficiência fotossintética em ecotipos de feijoeiro cultivados no semiárido. Pesquisa Agropecuária Tropical, 42(2), 181-188. DOI: https://doi.org/10.1590/S1983-40632012000200010.
(XI) Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016.
(XII) Haghighi, M., Pessarakli, M., 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117. DOI: https://doi.org/10.1016/j.scienta.2013.06.034.
(XIII) Jadoski, S.O., Klar, A.E., Salvador, E.D., 2005. Relações hídricas e fisiológicas em plantas de pimentão ao longo de um dia. Ambiência, 1(1), 11-19.
(XIV) Kirschbaum, M.U.F., 1994. The sensitivity of C3 photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration. Plant, Cell & Environment, 17(6), 747-754. DOI: https://doi.org/10.1111/j.1365-3040.1994.tb00167.x.
(XV) Kusvuran, S., 2012. Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). African Journal of Agricultural Research, 7(5), 775-781. DOI: https://doi.org/10.5897/AJAR11.1783.
(XVI) Lana, R.M.Q., Korndorfer, G.H., Junior, L.A., Silva, A.F., Lana, A.M., 2003. Efeito do silicato de cálcio sobre a produtividade e acumulação de silício no tomateiro. Bioscience Journal, 19(2), 15-20.
(XVII) Lichtenthaler, H.K., 1987. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382. DOI: https://doi.org/10.1016/0076-6879(87)48036-1.
(XVIII) Marodin, J.C., Resende, J.T., Morales, R.G., Silva, M.L., Galvão, A.G., Zanin, D.S., 2014. Yield of tomato fruits in relation to silicon sources and rates. Horticultura Brasileira, 32(2), 220-224. DOI: https://doi.org/10.1590/S0102-05362014000200018.
(XIX) Murillo-Amador, B., Yamaguchi, T., Rueda-Puente, E., Ávila-Serrano, N., García-Hernádez, J.L., López-Aguilar, R., Troyo-Diéguez, E., Nieto-Garibay, A., 2007. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of Agronomy and Crop Science, 193(6), 413-421. DOI: https://doi.org/10.1111/j.1439-037X.2007.00273.x.
(XX) Parveen, N., Ashraf, M., 2010. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pakistan Journal of Botany, 42(3), 1675-1684.
(XXI) Rocha, M.R.L., Coutinho, P.W.R., Abade, M.T.R., Inagaki, A.M., Cadorin, D.A., Hoespers, L.M.L., 2019. Morfofisiologia de plantas de couve manteiga sob concentrações de húmus líquido. Revista de Ciências Agroveterinárias, 18(4), 438-443. DOI: https://doi.org/10.5965/223811711842019438.
(XXII) Rodrigues, F.A., Oliveira, L.A., Korndörfer, A.P., Korndörfer, G.H., 2011. Silício: um elemento benéfico e importante para as plantas. Informações Agronômicas, 134(1), 14-20.
(XXIII) Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M., Al Sahli, A., 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucubita pepo L. Environmental Toxicology and Chemistry, 33(11), 2429-2437. DOI: https://doi.org/10.1002/etc.2697.
(XXIV) Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(1), 337-354. DOI: https://doi.org/10.1016/S0034-4257(02)00010-X.
(XXV) Taiz, L., Zeiger, E., Moller, I.M., Murphy, A., 2017. Plant Physiology and Development, sixth ed. Sinauer Associates, Sunderland.
(XXVI) Zeist, A.R., Resende, J.T.V., Faria, M.V., Gabriel, A., Adriano, E., Lima Filho, R.B., 2018. Photosynthetic characteristics in species and interspecific hybrids of tomato. Horticultura Brasileira, 36(3), 362-370. DOI: https://doi.org/10.1590/s0102-053620180313.
Downloads
- PDF (English) 500
Publicado
Como Citar
Edição
Seção
Licença
Os autores mantêm os direitos dos artigos e, portanto, são livres para compartilhar, copiar, distribuir, executar e comunicar publicamente o trabalho sob as seguintes condições:
Reconheça os créditos do trabalho da maneira especificada pelo autor ou licenciante (mas não de uma maneira que sugira que você tenha o apoio deles ou que eles apoiem o uso do trabalho deles).
JOURNAL OF NEOTROPICAL AGRICULTURE - Revista de Agricultura Neotropical (ISSN 2358-6303) está sob licença https://creativecommons.org/licenses/by/4.0/
A Universidade Estadual de Mato Grosso do Sul, Centro de Desenvolvimento Sustentável do Bolsão Sul-Mato-grossense (CEDESU), da Unidade Universitária de Cassilândia (UUC) conserva os direitos patrimoniais (direitos autorais) das obras publicadas e favorece e permite a sua reutilização sob a licença supracitada.
------------
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A provas finais serão enviadas aos autores.
Os trabalhos publicados passam a ser propriedade da revista. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.