Controle biológico de Corynespora cassicola e Drechslera triticirepentis
Visualizações: 358DOI:
https://doi.org/10.32404/rean.v9i4.7111Palavras-chave:
Pseudomonas fluorencens, Pantoea aglomerans, Bacillus sp., Inibição do crescimento micelialResumo
O controle químico é o método mais usado no manejo de doenças em grandes culturas como soja e trigo. No entanto, a alguns anos o controle biológico tem ganhado destaque. Assim, avaliou-se o antagonismo das bactérias Pseudomonas fluorencens, Pantoea aglomerans e Bacillus sp. sobre os fitopatógenos Corynespora cassiicola e Drechslera tritici-repentis, isolados previamente de folhas de soja e trigo, respectivamente. O experimento foi realizado em condições controladas, no Laboratório de Fitobacteriologia da Faculdade de Agronomia e Medicina Veterinária (FAMV), Universidade de Passo Fundo (UPF), Rio Grande do Sul, Brasil. Os tratamentos foram: T1: P. fluorencens + patógeno; T2: P. aglomerans + patógeno; T3: Bacillus spp. + patógeno e T4: patógeno (controle). Em cada experimento (C. cassiicola e D. tritici-repentis) se utilizou um delineamento inteiramente casualizado, com seis repetições cada. Os dados foram submetidos a uma análise de regressão linear, obtendo também a taxa de aumento diário (slope). O tempo final foi submetido a um ANOVA, e as médias comparadas pelo teste de Tukey (P < 0,05). P. fluorencens, P. aglomerans e Bacillus sp. reduziram o crescimento micelial em 74 e 87 %, de C. cassiicola e D. tritici-repentis, respectivamente. Embora este trabalho foi realizado em condições in vitro, pode servir como base para outros de controle biológico, especialmente com respeito ao manejo de doenças causadas por C. cassiicola e D. tritici-repentis, em condições de campo.
Referências
(I) AGROFIT. 2022. Brasília, MAPA. https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (acessado 9 de agosto de 2022).
(II) Amorim, l.; Rezende, J.A.M.; Bergamin-Filho, A. 2018. Manual de fitopatologia: princípios e conceitos. 5. ed. Agronômica Ceres, Ouro Fino, v. 1. 573 p.
(III) Asaturova, A., Zhevnova, N., Tomashevich, N., Pavlova, M., Kremneva, O., Volkova, G., Sidorov, N. 2022. Efficacy of new local bacterial agents against Pyrenophora tritici-repentis in Kuban region, Russia. Agronomy, 12(2), 373. DOI: https://doi.org/10.3390/agronomy12020373
(IV) Avozani, A., Reis, E.M, Tonin, R.B. 2014. Sensitivity loss by Corynespora cassiicola, isolated from soybean, to the fungicide carbendazim. Summa Phytopathologica, 40(2), 273-276. DOI: https://doi.org/10.1590/0100-5405/1928
(V) Bach, E., Seger, G.D.D.S., Fernandes, G.C., Lisboa, B.B., Passagliaa, L.M.P. 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99(3), 141-149. DOI: https://doi.org/10.1016/j.apsoil.2015.11.002
(VI) Correa, E.B., Bettiol, W., Sutton, J.C. 2010. Controle biológico da podridão radicular (Pythium aphanidermatum) e promoção de crescimento por Pseudomonas chlororaphis 63-28 e Bacillus subtilis GB03 em alface hidropônica. Summa Phytopathologica, 36(4), 275-281. DOI: https://doi.org/10.1590/S0100-54052010000400001
(VII) Dimkić, I., Janakiev, T., Petrović, M., Degrassi, G., Fira, D. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754. DOI: https://doi.org/10.1016/j.pmpp.2021.101754
(VIII) Dutkiewicz, J., Mackiewicz, B., Lemieszek, M.K., Golec, M., Milanowski, J. 2016. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Annals of Agricultural and Environmental Medicine, 23(2), 206-222 DOI: https://doi.org/10.5604/12321966.1203879
(IX) Fernandes, M.F.R., Ribeiro, T.G., Rouws, J.R., Soares, L.H.B, Zilli, J.É. 2021. Biotechnological potential of bacteria from genera Bacillus paraburkholderia and Pseudomonas to control seed fungal pathogens. Brazilian Journal of Microbiology, 52(2), 705-714. DOI: https://doi.org/10.1007/s42770-021-00448-9
(X) Ferraz, H.G.M.; Romeiro, R.S.; García, F.A.O., Souza, A.N. 2008. Biocontrole da mancha-alvo do tomateiro por Bacillus cereus em função do modo de dispensa na planta. Revista Trópica – Ciências Agrárias e Biológicas, 2(2), 35-39. https://scholar.google.com.br/scholar?cluster=6977707951730903831&hl=pt-BR&as_sdt=0,5
(XI) Lammari, H.I., Rehfus, A., Stammler, G., Benslimane, H. 2020. Sensitivity of the Pyrenophora teres population in Algeria to Quinone outside inhibitors, succinate dehydrogenase inhibitors and demethylation inhibitors. The Plant Pathology Journal, 36(3), 218. DOI: https://doi.org/10.5423%2FPPJ.OA.09.2019.0237
(XII) Laribi, M., Akhavan, A., Ben M’Barek, S., Yahyaoui, A.H., Strelkov, S.E., Sassi, K. 2022. Characterization of Pyrenophora tritici-repentis in Tunisia and comparison with a global pPathogen population. Plant Disease, 106(2), 464-474. DOI: https://doi.org/10.1094/PDIS-04-21-0763-RE
(XIII) Larran, S.; Simón, M.R., Moreno, M.V., Santamarina Siurana, M.P., Perelló, A. 2016. Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92(1), 17-23, DOI: https://doi.org/10.1016/j.biocontrol.2015.09.002
(XIV) Ludwig, J.; Moura, A.B. 2007. Controle biológico da queima-das-bainhas em arroz pela microbiolização de sementes com bactérias antagonistas. Fitopatologia Brasileira, 32(5), 381–386. DOI: https://doi.org/10.1590/S0100-41582007000500002
(XV) Meyer, M.C., Campos, H.D., Godoy, C.V., Mitinori, C., Utiamada, M.C.N.D.O., Jaccoud Filho, D.S, Venancio, W.S., Medeiros, F.H.V., Juliatti, F.C., Carneiro, L,C., Nunes Junior, J., Martins, M.C. 2019. Experimentos cooperativos de controle biológico de Sclerotinia sclerotiorum na cultura da soja: Resultados sumarizados da safra 2018/2019. Londrina, Embrapa Soja, 20p. https://acacia.cnpso.embrapa.br:8080/cferrugem_files/1669333285/CT%20161%20Ferrugem%20MS.pdf (acessado 9 de agosto de 2022).
(XVI) Meyer, M.C.; Campos, H.D.; Godoy, C.V.; Utiamada, C.M. (ed.). 2016. Ensaios cooperativos de controle biológico de mofo branco na cultura da soja - safras 2012 a 2015. Londrina, Embrapa Soja, 46 p. (Embrapa Soja. Documentos, 368). https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1041275 (acessado 9 de agosto de 2022)
(XVII) Moloi, M.J.; Van der Merwe, R. 2021. Drought tolerance rResponses in vegetable-tType soybean iInvolve a network of biochemical mechanisms at flowering and pod-filling stages. Plants, 10(8), 1-17. DOI: https://doi.org/10.3390/plants10081502
(XVIII) Rodriguez, F; Pfender, WF. 1997. Antibiosis and antagonism of Sclerotinia homoeocarpa and Drechslera poae by Pseudomonas fluorescens Pf-5 in vitro and in planta. Phytopathology, 87(6), 614-621. DOI: https://doi.org/10.1094/PHYTO.1997.87.6.614
(XIX) Rondon, M.N., Lawrence, K.S. 2019. Corynespora cassiicola isolates from soybean in Alabama detected with G143A mutation in the cytochrome b gene. Plant Health Progress, 20(4), 247-249. DOI: https://doi.org/10.1094/PHP-07-19-0046-BR
(XX) Ribeiro, S.M., Felicio, M.R., Boas, E.V., Goncalves, S., Costa, F.F., Samy, R.P., Franco, O.L. 2016. New frontiers for anti-biofilm drug development. Pharmacology & therapeutics, 160, 133-144, DOI: https://doi.org/10.1016/j.pharmthera.2016.02.006
(XXI) Sautua, F.J., Carmona, M.A. 2021. Detection and characterization of QoI resistance in Pyrenophora tritici‐repentis populations causing tan spot of wheat in Argentina. Plant Pathology, 70(9), 2125-2136. DOI: https://doi.org/10.1111/ppa.13436
(XXII) Shaheen, T.; Mahmood, R.; Shahid Riaz, M.; Zafar, Y.; Mahmood, R. 2016. Soybean Production and Drought Stress (1), 177–196. DOI: https://doi.org/10.1016/B978-0-12-801536-0.00008-6
(XXIII) Soares, R.M., Arias, C.A.A. 2020. Inheritance of soybean resistance to Corynespora cassiicola. Summa Phytopathologica, 46(2), 85-91. DOI: https://doi.org/10.1590/0100-5405/232903
(XXIV) Teramoto, A.; Meyer, M.C.; Suassuna, N.D.; Cunha, M.G. 2017. Sensibilidade de Corynespora cassiicola isolado de soja a fungicidas in vitro e controle químico de mancha-alvo da soja no campo. Summa Phytopathologica, 43(4), 281-289. DOI: https://doi.org/10.1590/0100-5405/2195
(XXV) Tonin, R.B.; Reis, E.M.; Avozani, A. 2017. Redução da sensibilidade in vitro de Drechslera tritici-repentis, isolados do trigo, a fungicidas estrobilurinas e triazóis, in vitro. Summa Phytopathologica, 43(1), 20-25. DOI: https://doi.org/10.1590/0100-5405/2160
(XXVI) Vasebi Y, Alizadeh A, Safaie N. 2015. Pantoea agglomerans ENA1 as a biocontrol agent of Macrophomia phaseolina and growth enhancer of soybean. Journal of Crop Protection, 4(1), 43–57. https://jcp.modares.ac.ir/article-3-8035-en.html (acessado 9 de agosto de 2022)
(XXVII) Vicentini, S.N.C., Carvalho, G, Krug, L.D., Nunes, T.C., Silva, A.G., Moreira, S.I., Gonçalves, L.M.D.P., Silva, T.C., Ceresini, PC. 2022. Bioprospecting fluorescent Pseudomonas from the Brazilian Amazon for the biocontrol of signal grass Foliar blight. Agronomy, 12(6), 1395. DOI: https://doi.org/10.3390/agronomy12061395
(XXVIII) Zhao, H.; Zhai, X.; Guo, L.; Liu, K.; Huang, D.; Yang, Y.; Li, J.; Xie, S.; Zhang, C.; Tang, S. 2019. Assessing the efficiency and sustainability of wheat production systems in different climate zones in China using emergy analysis. Journal of Cleaner Production, 235, 724–732. DOI: https://doi.org/10.1016/j.jclepro.2019.06.251
(XXIX) Zhu, J., Zhang, L., Li, H., Gao, Y., Mu, W., Liu, F. 2020. Development of a LAMP method for detecting the N75S mutant in SDHI-resistant Corynespora cassiicola. Analytical Biochemistry, 597, 113687. DOI: https://doi.org/10.1016/j.ab.2020.113687
(XXX) Yang, M.M., Wen, S.S., Mavrodi, D.V., Mavrodi, O.V., von Wettstein, D., Thomashow, L.S., Guo, J.H., Weller, D.M. 2014. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology, 104(3): 248-256. DOI: https://doi.org/10.1094/PHYTO-05-13-0142-R
Downloads
- pdf (English) 247
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os autores mantêm os direitos dos artigos e, portanto, são livres para compartilhar, copiar, distribuir, executar e comunicar publicamente o trabalho sob as seguintes condições:
Reconheça os créditos do trabalho da maneira especificada pelo autor ou licenciante (mas não de uma maneira que sugira que você tenha o apoio deles ou que eles apoiem o uso do trabalho deles).
JOURNAL OF NEOTROPICAL AGRICULTURE - Revista de Agricultura Neotropical (ISSN 2358-6303) está sob licença https://creativecommons.org/licenses/by/4.0/
A Universidade Estadual de Mato Grosso do Sul, Centro de Desenvolvimento Sustentável do Bolsão Sul-Mato-grossense (CEDESU), da Unidade Universitária de Cassilândia (UUC) conserva os direitos patrimoniais (direitos autorais) das obras publicadas e favorece e permite a sua reutilização sob a licença supracitada.
------------
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A provas finais serão enviadas aos autores.
Os trabalhos publicados passam a ser propriedade da revista. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.