Redes Neurais artificiais e Sistema Adaptativo de Inferência Neuro Fuzzy para análise e previsão da produtividade do trigo

Autores

DOI:

https://doi.org/10.32404/rean.v10i3.7553

Palavras-chave:

Rendimento da colheita, Correlação, ANN, ANFIS

Resumo

O presente estudo avaliou a previsão do rendimento das culturas de trigo no distrito de Bagalkot, do Estado de Karnataka, India. O estudo teve como objetivo fornecer previsões de rendimento das colheitas para ajudar os agricultores a otimizar suas estratégias de cultivo e comercialização. O modelo usou várias variáveis independentes tais como temperatura, humidade do ar e recursos hídricos para prever o crescimento no rendimento das culturas de trigo. O trabalho se desenvolveu e testou dois modelos diferentes: Modelo de Rede Neural Artificial (Artificial Neural Network – ANN) e Sistema de Interferência Neuro-fuzzy Adaptativo (Adaptive Neuro-fuzzy Interference System - ANFIS) a fim prever o crescimento do rendimento das culturas com base nas variáveis independentes selecionadas. O modelo ANFIS foi particularmente interessante, pois pôde prever um mapeamento entre os parâmetros de entrada e saída, os quais podem ser úteis para compreender a relação entre diferentes variáveis. ANFIS foi considerado um modelo de predição melhor que o modelo ANN, com uma porcentagem de erro variando de 0-3%. De maneira geral, o trabaho destacou a importância das previsões do rendimento das culturas e os potenciais benefícios que as simulações podem gerar para os agricultores e para o setor agrícola em geral.

Biografia do Autor

SHAILESH RAO, NITTE MIT BANGALORE

Nitte Meenakshi Institute of Technology, Department of Mechanical Engineering, Bangalore, India.

Manoj Vishal, Nitte Meenakshi Institute of Technology

Nitte Meenakshi Institute of Technology, Department of Mechanical Engineering, Bangalore,  India.

Anjana Krishnan, National Aerospace Laboratories

National Aerospace Laboratories, Bangalore, India.

Referências

(I) Achieng, Kevin, O. 2019. Modeling of Soil Moisture Retention Curve Using Machine Learning Techniques: Artificial and Deep Neural Networks Vs Support Vector Regression Models. Computers & Geosciences, 133, 104320. DOI: https://doi.org/10.1016/j.cageo.2019.104320

(II) Ansarifar, J., Wang, L., Archontoulis, S.V. 2021. An interaction regression model for crop yield prediction. Scientific Reports, 11(1), 1-10. DOI: https://doi.org/10.1038/s41598-021-97221-7.

(III) Ayyappa, T., Manoj, I.V., Kurse, S., Kumar, J., Bhattacharyya, T. 2021. Evaluation of prediction performance for K-Nearest Neighbour, Random Forest algorithm and Extreme Gradient Boosting algorithms in the forecasting of fault diagnosis for roller bearings. Recent Advances in Material, Manufacturing, and Machine Learning, 491-500, CRC Press Books., DOI: https://doi.org/10.1201/9781003358596-41

(IV) Beloti, I.F., Nunes Rodrigues de Azevedo, B., Maciel, G.M., Peres, H.G., Pivetta Momesso, M., Alves, I.M. 2019. Agronomic Performance and Physiological Quality of Pepper Seeds Under Different Planting System. Revista de Agricultura Neotropical, 6(4), 57–62. DOI: https://doi.org/10.32404/rean.v6i4.3432.

(V) Bhavani, A.K., Singh,, G, Bhavani., A.K., Singh. 2018. ARIMA Forecast of Area, Production and Productivity of Rice in Amalgamated Raipur Using R. International Journal of Agricultural Science and Research, 8(1), 29–36. DOI: https://doi.org/10.24247/ijasrfeb201818.

(VI) Chmielewski, F.M., Potts, J.M. 1995. The relationship between crop yields from an experiment in southern England and long-term climate variations. Agricultural and Forest Meteorology, 73(1-2), 3–66. DOI: https://doi.org/10.1016/0168-1923(94)02174-I

(VII) Drummond, S.T., Sudduth, K.A., Joshi, A., Birrell, S.J., Kitchen, N.R., Palm, H.L. 2003. Statistical and neural methods for site-specific yield prediction. Transactions of the ASAE, 46(1), 5-14. DOI: https://doi.org/10.13031/2013.12541.

(VIII) Elavarasan, D., Vincent, D. R., Sharma, V., Zomaya, A. Y., Srinivasan, K. 2018. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Computers and Electronics in Agriculture, 155, 257–282. DOI: https://doi.org/10.1016/j.compag.2018.10.024

(IX) Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V. 2013. Random forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural Water Management, 116, 142-150. DOI: https://doi.org/10.1016/j.agwat.2012.07.003.

(X) Gholami, V., Khaleghi, M.R. 2018. A comparative study of the performance of artificial neural network and multivariate regression in simulating springs discharge in the Caspian Southern Watersheds, Iran. Applied Water Science, 9(1), 1-10. DOI: https://doi.org/10.1007/s13201-018-0886-4

(XI) Gromping, U. 2009. Variable importance assessment in regression: linear regression versus random forest. The American Statistician, 63(4), 308-319. DOI: https://doi.org/10.1198/tast.2009.08199

(XII) Huang, J., Chen, X., Zhou, L., Xue, Y., Lin, J. 2017. Statistical analysis of the relationship between climate-induced maize yield and rainy-season precipitation across Inner Mongolia, North China. Theoretical and Applied Climatology, 129(3-4), 1145-1156. DOI: https://doi.org/10.1007/s00704-016-1839-1

(XIII) Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Timlin, D.J. 2016. Random forests for global and regional crop yield predictions. PloS One, 11(6), e0156571. DOI: https://doi.org/10.1371/journal.pone.0156571

(XIV) Kamath, P., Patil, P., Shrilatha, S., Sushma, Sowmya, S. 2021. Crop yield forecasting using data mining. Global Transitions Proceedings, 2(2), 402-407. DOI: https://doi.org/10.1016/j.gltp.2021.08.008

(XV) Kumar, V., Ramesh, K. 2023. Development of Artificial Neural Network Model for Indian Steel Consumption Forecast. Journal of the Institution of Engineers (India): Series D, 2023. DOI: https://doi.org/10.1007/s40033-023-00482-x.

(XVI) Kumar, V.., Ramesh, K. 2023. Development of Artificial Neural Network Model for Indian Steel Consumption Forecast. Journal of the Institution of Engineers (India): Series D, 2023. DOI: https://doi.org/10.1007/s40033-023-00482-x.

(XVII) Manoj, I.V. 2021. Slant Type Taper Profiling and Prediction of Profiling Speed for a Circular Profile during Wire Electric Discharge Machining using Hastelloy-X. Proceedings of the Institution of Mechanical Engineers, Part B. Journal of Engineering Manufacture. 235(21), 5511-5524. DOI: https://doi.org/10.1177/0954406221992398

(XVIII) Manoj, I.V., Narendranath, S. 2020. Variation and artificial neural network prediction of profile areas during slant type taper profiling of triangle at different machining parameters on Hastelloy X by wire electric discharge machining. Proceedings of the Institution of Mechanical Engineers, Part E. Journal of Process Mechanical Engineering, 234(6), 982-996. DOI: https://doi.org/10.1177/0954408920938614

(XIX) Manoj, I.V., Narendranath, S. 2023. Evaluation of WEDM Performance Characteristics and Prediction of Machining Speed during Taper Square Profiling on Hastelloy-X. Australian Journal of Mechanical Engineering, 21(4), 1152-1167. DOI: https://doi.org/10.1080/14484846.2021.1960670

(XX) Manoj, I.V., Soni, H., Narendranath, S., Mashinini, P.M., Kara, F. 2022. Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX. Advances in Materials Science and Engineering, (special issue), 1-9. DOI: https://doi.org/10.1155/2022/5192981

(XXI) Misra, D., Oommen, T., Agarwal, A., Mishra, S.K., Thompson, A.M. 2009. Application and analysis of support vector machine-based simulation for runoff and sediment yield. Biosystems Engineering, 103(4), 527-535. DOI: https://doi.org/10.1016/j.biosystemseng.2009.04.017

(XXII) Rahman, A.B.M., Salman. 2022. A Comparative Study Between Linear Regression and Support Vector Regression Model Based on Environmental Factors of a Smart Bee Farm, Korean Institute of Smart Media, 11(5), 38–47. DOI: https://doi.org/10.30693/smj.2022.11.5.38

(XXIII) Ramsauer, T., Wei, T., Low, A., Marzahn, P. 2021. An Hourly Soil Moisture Data Set Based on Weather Radar, Soil Properties and Reanalysis Temperature Data. Remote Sensing, 13(9), 1712. DOI: https://doi.org/10.3390/rs13091712

(XXIV) Razavi, M.S., Golmohammadi, A., Sedghi, R., Asghari, A. 2019. Prediction of bruise volume propagation of pear during the storage using soft computing methods. Food Science & Nutrition, 8(2), 884–893. DOI: https://doi.org/10.1002/fsn3.1365

(XXV) Russo, T.A., Devineni, N., Lall, U. 2015. Assessment of agricultural water management in Punjab, India, Using Bayesian Methods. Sustainability of Integrated Water Resources Management, 147-162. DOI: https://doi.org/10.1007/978-3-319-12194-9_9

(XXVI) Sarturi, M.V.R., Menegassi Bianchi Teixeira, C. A., Carvalho, I. R., Demari, G. H., Vieira Loro, M., Pradebon, L. C., Donadel Port, E. 2022. Prediction Of Corn Grain Productivity as A Function Of Altitude And Plant Population. Revista de Agricultura Neotropical, 9(4), e7070. DOI: https://doi.org/10.32404/rean.v9i4.7070.

(XXVII) Su, Tao. 2012. Regional Yield Estimation for Spring Maize With Multi-Temporal Remotely Sensed Data in Junchuan, China, Advanced Materials Research, vol. 610–613, Trans Tech Publications. 3601–05. DOI: https://doi.org/10.4028/www.scientific.net/amr.610-613.3601.

(XXVIII) Xu, X.,Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., Wu, X. 2019. Design of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, China. Ecological Indicators, 101, 943-953. DOI: https://doi.org/10.1016/j.ecolind.2019.01.059

Downloads

Publicado

2023-09-14

Como Citar

RAO, S., Vishal, M., & Krishnan, A. (2023). Redes Neurais artificiais e Sistema Adaptativo de Inferência Neuro Fuzzy para análise e previsão da produtividade do trigo. Revista De Agricultura Neotropical, 10(3), e7553. https://doi.org/10.32404/rean.v10i3.7553