Lâminas de irrigação na produtividade e qualidade de sementes de algodão produzidas no Arenito Caiuá

Visualizações: 33

Autores

DOI:

https://doi.org/10.32404/rean.v11i2.8295

Palavras-chave:

Gossypium spp., Qualidade de sementes, Vigor de sementes, Irrigação, Região de baixa altitude

Resumo

Para suprir a crescente demanda na produção de algodão é necessária a adoção de sementes de alta qualidade. Para obtenção de sementes de qualidade, deve-se considerar diversos fatores, como a quantidade de água fornecida à planta e o clima da região. Assim, este trabalho teve como objetivo avaliar o efeito de diferentes lâminas de irrigação na produtividade e qualidade fisiológica de sementes de algodão produzidas na região do Arenito Caiuá. Sementes de algodão da cultivar FiberMax FM 911 GLTP foram semeadas e, após o plantio, foram aplicados quatro tratamentos de lâmina de água: 0 (testemunha, sem irrigação), 50, 100 e 150 % da evapotranspiração da cultura (ETc), sendo estas lâminas mantidas até o final do ciclo da cultura. Os capulhos do algodão foram colhidos e deslintados manualmente e aferidos o peso dos capulhos e das sementes. As sementes foram submetidas aos testes de grau de umidade, germinação e a testes de vigor. As diferentes lâminas de água aplicadas às plantas apresentam efeito na produtividade do algodão, sendo que as lâminas de 50 e 100% da ETc propiciam maior produtividade. A ausência e o excesso de irrigação promovem redução significativa nas produtividades de algodão e de sementes. A qualidade fisiológica das sementes formadas não é afetada pelas diferentes lâminas de água aplicadas às plantas.

Biografia do Autor

Caio Henrique Marques Lima, Universidade Estadual de Maringá

Universidade Estadual de Maringá, Campus regional de Umuarama, Umuarama, Paraná, Brasil.

Martha Freire da Silva, Universidade Estadual Paulista “Júlio de Mesquita Filho”

Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Engenharia, Programa de pós-graduação em Ciências Agrárias,  Campus Ilha Solteira, Ilha Solteira, São Paulo, Brasil.

Alini da Silva Souza, Universidade Estadual de Maringá

Universidade Estadual de Maringá, Campus regional de Umuarama, Umuarama, Paraná, Brasil.

Cleverton Timóteo de Assunção, Universidade Estadual de Maringá

Universidade Estadual de Maringá, Campus regional de Umuarama, Umuarama, Paraná, Brasil.

João Paulo Francisco, Universidade Estadual de Maringá

Universidade Estadual de Maringá, Campus regional de Umuarama, Umuarama, Paraná, Brasil.

Nátally Emanuelly dos Santos, State University of Maringá

Universidade Estadual de Maringá, Campus regional de Umuarama, Umuarama, Paraná, Brasil.

Referências

(I) Allen, R., Pereira, L., Raes, D., Smith, M.,A.W. 1998. Crop evapotranspiration-Guidelines for computing crop water requ–rements - FAO Irrigation and drainage paper 56. Irrigation and Drainage, 300(56), 1-15. https://www.fao.org/4/x0490e/x0490e00.htm.

(II) Bai, M., Tao, O., Zhang, Z., Lang, S., Li, J., Chen, D., Wang, Y., Hu, X. 2023. Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China. Agricultural Water Management, 278, 108137. DOI: https://doi.org/10.1016/j.agwat.2023.108137.

(III) Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M.; Nonogaki, H. 2013. Seeds: physiology of development, germination and dormancy. 3rd ed. Springer, New York. 392p.

(IV) BRASIL/MAPA. Instrução Normativa nº 45, de 17 de setembro de 2013. Brasília, Ministério da Agricultura, Pecuária e Abastecimento. 22p.

(V) BRASIL/MAPA. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de defesa Agropecuária. Brasília, Mapa/ACS,2009. 395p.

(VI) Cheng, M., Wang, H., Fan, J., Zhang, S., Wang, Y., Li, Y., Sun, X., Yang, L., Zhang, F. Water productivity and seed cotton yield in response to deficit irrigation: a global meta-analysis. Agricultural Water Management, 255, 107027. DOI: https://doi.org/10.1016/j.agwat.2021.107027.

(VII) Coelho, J.D., 2023. Algodão. Escritório Técnico de Estudos Econômicos do Nordeste, 284(4), 1-10. https://www.bnb.gov.br/s482-dspace/bitstream/123456789/1748/1/2023_CDS_284.pdf. (acessado 01 de outubro de 2023).

(VIII) CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. 2023. Ministério da Agricultura, Pecuária e Abastecimento. Acompanhamento de Safra Brasileira, Safra 2022/2023. Brasília: Ministério da Agricultura, Pecuária e Abastecimento. 110p.

(IX) Echer, F.R. 2014. O algodoeiro e os estresses abióticos: temperatura, luz, água e nutrientes. Instituto Mato-Grossense do Algodão, Cuiabá. https://sites.unoeste.br/gea/wp-content/uploads/2018/11/2014-O-algodoeiro-e-os-estresses-abi%C3%B3ticos-Temperatura-luz-%C3%A1gua-e-nutrientes.pdf. (acessado 17 de maio de 2024)

(X) Echer, F.R.; Rosolem, C.A. 2022. Fisiologia aplicada ao manejo do algodoeiro. Instituto Mato-Grossense do Algodão, Cuiabá.

(XI) Fidalski, J., Tormena, C.A., Alves, S.J., Auler, P.A.M. 2013. Influência das frações de areia na retenção e disponibilidade de água em solos das formações caiuá e paranavaí. Revista Brasileira de Ciência do Solo, 37, 613-621. DOI: https://doi.org/10.1590/S0100-06832013000300007

(XII) Gama, G.F.V, Oliveira, R.O., Pinheiro, D.T., Silva, L.J., Dias, D.C.F.S. 2021. Yield and physiological quality of wheat seeds produced under different irrigation irrigation blades and leaf Silicon. Semina, 42(4), 2233-2252. DOI: https://doi.org/10.5433/1679-0359.2021v42n4p2135

(XIII) Kedisso, E.G., Guenthner, J., Maredia, K., Elagib, T., Oloo, B., Assefa, S. 2023. Sustainable access of quality seeds of genetically engineered crops in Easter-Africa - case study of Bt Cotton. GM Crops & Food, 14(1), 1-23. DOI: https://doi.org/10.1080/21645698.2023.2210134.

(XIV) Kolahi, M., Faghani, E., Kazemian, M., Goldson-Barnaby, A., Dodangi, S. 2021. Changes in secondary metabolites and fiber quality of cotton (Gossypium hirsutum) seed under consecutive water stress and in silico analysis of cellulose synthase and xyloglucan endotransglucosylase. Physiology and Molecular Biology of Plants, 27(8), 1837–1857. DOI: https://doi.org/10.1007/s12298-021-01033-y.

(XV) Kolahi, M., Faghani, E., Goldson-Barnaby, A., Sohrabi, B. Physiological traits and anatomic structures of the seed for two short cotton season genotypes (Gossypium hirsutum L.) under water stress. Journal of Integrative Agriculture, 19(1), 89-98. DOI: https://doi.org/10.1016/S2095-3119(19)62619-5.

(XVI) Koudahe, K., Sheshukov, A.Y., Aguilar, J., Djaman, K. Irrigation-water management and productivity of cotton: a review. Sustainability, 13, 10070. DOI: https://doi.org/10.3390/su131810070.

(XVII) Krzyzanowski, F.C., Vieira, R.D., Marcos-Filho, J., França Neto, J.B. 2020. Vigor de sementes: conceito e testes, 2 ed. Abrates, Londrina, 601p.

(XVIII) Lohani, N., Singh, M.B, Bhalla, P.L. 2020. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71(2), 555–568. DOI: https://doi.org/10.1093/jxb/erz426.

(XIX) Maguire, J.D. 1962. Speed of germination-and in selection and evaluation for seeding emergence and vigor. Crop Science, 2(2), 176-177. DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x.

(XX) Marcos-Filho, J. 2015. Fisiologia de sementes de plantas cultivadas. FEALQ, Piracicaba. 660p.

XXI. Moura, L.O, Silva, M.F., Cunha, F.F., Picoli, E.A.T., Silva, F.C.S., Silva, F.L. 2023. Water deficit as a trigger to immature soybean pod opening. Journal of Agronomy and Crop Science, 209(3), 1-12. DOI: https://doi.org/10.1111/jac.12634

(XXII) Moura, L., Landau, E., Silva, G., 2020. Evolução da produção de algodão herbáceo (Gossypium hirsutum, Malvaceae), In: Landau, E.C.; Silva, G.A.; Moura, L.; Hirsch, A.; Guimaraes, D.P. (Ed.). Dinâmica da produção agropecuária e da paisagem natural no Brasil nas últimas décadas: produtos de origem vegetal. Embrapa, Brasília, 265-294.

(XXIII) Oliveira, K.R., Sampaio, F.R., Siqueira, G.S., Galvão, I.M., Bennett, S.J., Gratão, P.L., Barbosa, R.M. 2021. Physiological quality of soybean seeds grown under different low altitude field environments and storage time. Plant, Soil and Environment, 67(2), 92-98. DOI: http://dx.doi.org/10.17221/512/2020-PSE.

(XXIV) Peel, M., Finlayson, B.L., McMahon, T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. DOI: https://doi.org/10.5194/hess-11-1633-2007.

(XXV) Pauletti, V., Motta, A., 2019. Manual de adubação e calagem para o estado do Paraná. 2. ed. SBCS/NEPAR, Curitiba.

(XXVI) Queiroga, V.P., Mendes, N.V.B., Lima, D.C. 2022. Produção de sementes de algodão no âmbito do agronegócio. Research, Society and Development, 11(14), e71111435753. DOI: http://dx.doi.org/10.33448/rsd-v11i14.35753.

(XXVII) Shareef, M., Gui, D., Zeng, F., Waqas, M., Zhang, B., Iqbal, H. 2018. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agricultural Water Management, 206, 1-10. DOI: https://doi.org/10.1016/j.agwat.2018.04.042

(XXVIII) Shavkiev, J., Azimov, A., Khamdullaev, S., Karimov, H., Abdurasulov, F., Nurmetov, K. 2023. Morpho-physiological and yield contributing traits of cotton varieties with different tolerance to water deficit. Journal of wildlife and biodiversity, 7(4), 214-228. DOI: https://doi.org/10.5281/10.5281/zenodo.8304871.

(XXIX) Steduto, P., Hsiao, T., Fereres, E., Raes, D. 2012. Crop yield response to water. FAO Irrigação e drenagem: Paper 66. 505p. https://www.fao.org/4/i2800e/i2800e.pdf.

(XXX) Snider, J.L.; Oosterhuis, D.M. 2012. Heat stress and pollen-pistil interactions. In: D.M. Oosterhuis, J.T. Cothren (Eds.) Flowering and fruiting in cotton. Cotton Foundation, Memphis, 59-78.

(XXXI) Silva, M.F., Araujo, E.F., Silva, L.J, Amaro, H.T.R., Dias, L.A.S., Dias, D.C.F.S. 2019. Tolerance of crambe (Crambe abyssinica Hochst) to salinity and water stress during seed germination and initial seedling growth. Ciência e Agrotecnologia, 43, 1-13, DOI: https://doi.org/10.1590/1413-7054201943025418.

(XXXII) Sun, Y., Wang, C., Chen, H.Y.H., Ruan, H. 2020. Response of plants to water stress: a meta-analysis. Frontier in Plant Science, 11, article 978. DOI: https://doi.org/10.3389/fpls.2020.00978.

(XXXIII) Wijewardana, C., Reddy, K.R., Bellaloui, N. 2019. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry, 278, 92-100. DOI: https://doi.org/10.1016/j.foodchem.2018.11.035.

(XXXIV) Wu, F., Guo, S., Huang, W., Han, Y., Wang, Z., Feng, L., Wang, G., Li, X., Lei, Y., Zhi, x., Xiong, S., Jiao, Y., Xin, M., Yang, B., Li, Y. 2024. Soil water movement may regulate soil water consumption and improve cotton yields under different cotton cropping systems. Industrial Crops and Products, 211, 118278. DOI: https://doi.org/10.1016/j.indcrop.2024.118278.

(XXXV) Zonta, J.H., Bezerra, J.R.C., Pereira, J.R., Sofiatti, V. 2016. Manejo da irrigação no algodoeiro. Ministério da Agricultura, Pecuária e Abastecimento, Campina Grande. 8p. (Circular técnica 139) https://ainfo.cnptia.embrapa.br/digital/bitstream/item/141494/1/Manejo-da-irrigacao.pdf.

Downloads

Publicado

2024-06-28

Como Citar

Lima, C. H. M., Silva, M. F. da, Souza, A. da S., Assunção, C. T. de, Francisco, J. P., & Santos, N. E. dos. (2024). Lâminas de irrigação na produtividade e qualidade de sementes de algodão produzidas no Arenito Caiuá. Revista De Agricultura Neotropical, 11(2), e8295. https://doi.org/10.32404/rean.v11i2.8295