SHORT COMMUNICATION: EFFECTS OF FOLIAR FERTILISATION WITH MICROALGAL EXTRACTS, MICRONUTRIENTS, GROWTH REGULATORS AND BIOFERTILISERS ON WHEAT PRODUCTIVITY

Authors

DOI:

https://doi.org/10.32404/rean.v12i4.9137

Keywords:

Biostimulants, Foliar fertilisation, Growth regulators, Porphyridium cruentum, Triticum aestivum L.

Abstract

Wheat (Triticum aestivum) is an important crop produced worldwide. Natural or synthetic products including phytostimulants, biofertilisers, biostimulants, bioregulators or phytoprotectors have been developed over the years. The objective of this study was to evaluate the effects of foliar application of micronutrients (essential minerals), growth regulators, extracts of the microalga Porphyridium cruentum and their mixtures on variables related to the growth and production of wheat (height of the plants at harvest, number of tillers per plant, weight of 1000 grains, pod length and yield). The experiment consisted of randomised blocks with four replications, consisting of 16 treatments (control, Zn, B, Cu, Mn, Zn+Cu+B+Mn, indolebutyric acid (AIB), 6-benzylaminopurine (BAP), Zn+Cu+B+Mn+AIB+BAP, P. cruentum freeze-dried polysaccharide (PS), P. cruentum freeze-dried material (FM), Zn+Cu+B+Mn+PS+FM, AIB+BAP+FM+gibberellic acid (GA), commercial-B, commercial-A and commercial-E). The single foliar application of micronutrients, commercial products containing micronutrients, growth regulators (indolbutyric acid, 6-bezylaminopurine, gibberellic acid and their mixtures), freeze-dried polysaccharide and biomass of P. cruentum, and mixtures of micronutrients and growth regulators did not potentiate the development and productivity of the wheat crop. The average height of wheat plants at harvest was 77.81 cm and ranged from 80.05 cm when the comercial-E product was applied to 74.43 cm with the application of P. cruentum polysaccharide extract at a dose of 62 g ha-1, which resulted in lower crop yield, although the difference was not significant. Additionally, the individual application of the P. cruentum polysaccharide extract did not significantly influence on plant growth.

Author Biographies

Silvana Ohse , Universidade Federal de Ponta Grossa

Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil.

Vinícius Cordeiro de Moraes, Universidade Federal de Ponta Grossa

Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil.

Lilyan Barbara Ruivo, Universidade Federal de Ponta Grossa

Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brasil.

Camila Nader , Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina, câmpus Florianópolis, Florianópolis, Santa Catarina, Brasil.

Rafael Garcia Lopes, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina, câmpus Florianópolis, Florianópolis, Santa Catarina, Brasil.

Marco Shizuo Owatari, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina, câmpus Florianópolis, Florianópolis, Santa Catarina, Brasil.

Roberto Bianchini Derner, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina, câmpus Florianópolis, Florianópolis, Santa Catarina, Brasil.

References

(I) Arif, Y., Bajguz, A., Hayat, S., 2023. Moringa oleifera extract as a natural plant biostimulant. J. Plant Growth Regul. 42, 1291–1306. https://doi.org/10.1007/s00344-022-10630-4

(II) Bano, A., Waqar, A., Khan, A., Tariq, H., 2022. Phytostimulants in sustainable agriculture. Front. sustain. food syst. 6, 801788. https://doi.org/10.3389/fsufs.2022.801788

(III) Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes. Brasília, DF: MAPA/ACS, 2009. 398 p. (In Portuguese)

(IV) Chanda, M.J., Merghoub, N., El Arroussi, H., 2019. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants? World J. Microbiol. Biotechnol. 35, 177. https://doi.org/10.1007/s11274-019-2745-3

(V) Colla, G., Rouphael, Y., 2020. Microalgae: New Source of Plant Biostimulants. Agronomy 10, 1240. https://doi.org/10.3390/agronomy10091240

(VI) Costa, L., Zucareli, C., Riede, C.R., 2013. Splitting of nitrogen fertilization on the yield performance of wheat genotypes. Rev. Ciênc. Agron. 44(2) 215-224. https://doi.org/10.1590/s1806-66902013000200002

(VII) Farias, W.R.L., Valente, A.P., Pereira, M.S., Mourão, P.A., 2002. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red alga Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans. J. Biol. Chem. 275(38), 29299-29307. https://doi.org/10.1074/jbc.m002422200

(VIII) Ferreira, D.F., 2019. SISVAR: a computer analysis system to fixed effects split plot type designs. Rev.Bras.Biom. 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450

(IX) Fioreze, S.L., Rodrigues, J.D., 2012. Wheat tillering as a function of plant regulator application. Rev. Bras. Cienc. Agrar. 7, 750-755. https://doi.org/10.5039/agraria.v7isa1923

(X) Fioreze, S.L., Rodrigues, J.D., 2012. Wheat tillering as affected by ion application of growth regulator. Ver. Bras. Cienc. Agrar. 7, 750-755. https://doi.org/10.5039/agraria.v7isa1923

(XI) Galindo, F.S., Teixeira Filho, M.C.M., Buzetti, S., Alves, C.J., Garcia, C.M.P., Nogueira, L.M., 2019. Algae extract as biostimulant in nutrition and irrigated wheat yield in the cerrado region. Colloq. Agrar. 15(1), 130-140. https://doi.org/10.5747/ca.2019.v15.n1.a277

(XII) Gallego, R.M., Martinez, A., Cifuentes, E., Ibanez, H.M., 2019. Development of a green downstream process for the valorization of Porphyridium cruentum biomass. Molecules 24, 1564. https://doi.org/10.3390/molecules24081564

(XIII) Islam, S., Mohammad, F., 2022. Plant growth regulators modulate photosynthetic efficiency, antioxidant system, root cell viability and nutrient acquisition to promote growth, yield and quality of Indian mustard. Acta Physiol. Plant. 44(12), 132. https://doi.org/10.1007/s11738-022-03466-8

(XIV) Kabir, A.H., Baki, M.Z.I., Ahmed, B., Mostofa, M.G., 2024. Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience. New Crops 1, 100013. https://doi.org/10.1016/j.ncrops.2024.100013

(XV) vKaya, M.D., Okçu, G., Atak, M., Çikili, Y., Kolsarici, O., 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Euro. J. Agron. 24(4), 291-295. https://doi.org/10.1016/j.eja.2005.08.001

(XVI) Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., Ahmad, P., 2023. Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regul 100, 267–282 (2023). https://doi.org/10.1007/s10725-022-00844-7

(XVII) Kumar, A.; Singh, J.S., 2020. Microalgal bio-fertilizers. In: Handbook of Microalgae-Based Processes and Products. Academic Press, p. 445-463. https://doi.org/10.1016/B978-0-12-818536-0.00017-8

(XVIII) Landi, M., Remorini, D., Pardossi, A., Guidi, L., 2013. Boron excess affects photosynthesis and antioxidant apparatus of greenhouse Cucurbita pepo and Cucumis sativus. J. Plant Res. 126(6), 775-786. https://doi.org/10.1007/s10265-013-0575-1

(XIX) Li, S., Zhang, C., Li, J., Yan, L., Wang, N., Xia, L., 2021. Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Physiol. Commun. 2(4), 100211. https://doi.org/10.1016/j.xplc.2021.100211

(XX) Medina-Cabrera, E.V., Rühmann, B., Schmid, J., Sieber, V., 2020. Characterization and comparison of Porphyridium sordidum and Porphyridium purpureum concerning growth characteristics and polysaccharide production. Algal Res. 49, 101931. https://doi.org/10.1016/j.algal.2020.101931

(XXI) Ohse, S., Godoi, L.B., Rezende, B.A., Otto, R.F., Godoy, A., 2014a. Germination and vigor of seeds of bean pod treated with Micronutrients. Visão Acadêmica 15(1), 27-39. https://doi.org/10.5380/acd.v15i1.35461

(XXII) Ohse, S., Lourenço, R., Rezende, B., Antunes, R., 2014b. Seed treatment of flaxseed with micronutrients. Visão Acadêmica 15(3), 30-38. https://doi.org/10.11606/d.11.2022.tde-06042022-175929

(XXIII) Ozório, R.A., Lopes, R., Lopes, G., Suede, B., Silva, C.P., Derner, R.B., Fracalossi, D., 2018. Growth and enzymatic profile of the Pacific white shrimp fed with Porphyridium cruentum extract. Bol. Inst. Pesca 41(1), 123-131.

(XXIV) Pacheco, D., Cotas, J., Rocha, C.P., Araújo, G.S., Figueirinha, A., Gonçalves, A.M., Pereira, L., 2021. Seaweeds’ carbohydrate polymers as plant growth promoters. Carbohydr. Polym. 2, 100097. https://doi.org/10.1016/j.carpta.2021.100097

(XXV) Peel, M.C., Finlayson, B.L., Mcmahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633-1644. https://doi.org/10.1127/0941-2948/2006/0130

(XXVI) Petterson, F.J., Cáceres, M.B., Arrúa, M.M., Chavez, E.M., Argüello, O.S., Mercado, D.A., Silguero, R.F., 2019. Doses of ammonium sulfate application in two seasons in wheat crop. Revista Cultivando o Saber 12(4), 32-39.

(XXVII) Rachidi, F., Benhima, R., Kasmi, Y., Sbabou, L., El Arroussi, H., 2021. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci. Rep. 11, 930. https://doi.org/10.1038/s41598-020-78820-2

(XXVIII) Rachidi, F., Benhima, R., Sbabou, L., Arroussi, H.E., 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: growth and metabolic distribution. Biotechnol. Rep. 25, e00426. https://doi.org/10.1016/j.btre.2020.e00426

(XXIX) Refaay, D.A., El-Marzoki, E.M., Abdel-Hamid, M.I., Haroun, S.A., 2021. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. J. Appl. Phycol. 33(6), 3807-3815. https://doi.org/10.1007/s10811-021-02584-z

(XXX) Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., 2018. Sistema Brasileiro de classificação de solos. 5.ed. Revista Ampliada Brasília: Embrapa, p. 356. Available in: https://www.agroapi.cnptia.embrapa.br/portal/assets/docs/SiBCS-2018-ISBN-9788570358004.pdf

(XXXI) Shaheen, A., Li, Z., Yang, Y., Xie, J., Zhu, L., Li, C., Nie, F., Wang, M., Wang, Y., Rasheed, A., Li, H., Zhou, Y., Song, C. P., 2024. Genetic regulation of wheat plant architecture and future prospects for its improvement. New Crops 2, 100048. https://doi.org/10.1016/j.ncrops.2024.100048

(XXXII) Silva, R.G., Borsoi, A., Lima, P.R., Pinto, J.S., Daniel, C., Lavratti, M.B., 2019. Organic and chemical fertilization in wheat. Revista Cultivando o Saber 2(3), 54-61.

(XXXIII) Teixeira, I.R., Borém, A., Araújo, G.A.A., Fontes, R.L.F., 2004. Manganese and zinc leaf application on common bean grown on a "Cerrado" soil. Sci. Agric. 61(1), 77-81. https://doi.org/10.1590/s0103-90162004000100013

(XXXIV) Uçarli, C., 2021. Effects of Salinity on Seed Germination and Early Seedling Stage. In Shah Fahad, S., Saud, S., Chen, Y., Wu, C., Wang, D. (eds). Abiotic Stress in Plants. IntechOpen, pp 494. https://doi.org/10.5772/intechopen.91549

(XXXV) Vasileva, I.V., Ivanova, J., 2019. Biochemical profile of green and red algae - a key for understanding their potential application as food additives. Trakia J. Sci. 17(1), 1-7. https://doi.org/10.15547/tjs.2019.01.001

(XXXVI) Wu, J., Song, Y., Wan, G.Y., Sun, L.Q., Wang, J.X., Zhang, Z.S., Xiang, C.B., 2024. Boosting crop yield and nitrogen use efficiency: the hidden power of nitrogen-iron balance. New Crops 2, 100047. https://doi.org/10.1016/j.ncrops.2024.100047

(XXXVII) Yu, Z., Zhan, J., Wang, H., Zheng, H., Xie, J., Wang, X. 2020. Analysis of influencing factors on viscosity of agar solution for capsules. In Journal of Physics: Conference Series 1653(1), 012059). IOP Publishing. https://doi.org/10.1088/1742-6596/1653/1/012059

Downloads

Published

2025-12-11

How to Cite

Ohse , S., Cordeiro de Moraes, V., Ruivo, L. B., Nader , C., Garcia Lopes, R., Shizuo Owatari, M., & Bianchini Derner, R. (2025). SHORT COMMUNICATION: EFFECTS OF FOLIAR FERTILISATION WITH MICROALGAL EXTRACTS, MICRONUTRIENTS, GROWTH REGULATORS AND BIOFERTILISERS ON WHEAT PRODUCTIVITY . REVISTA DE AGRICULTURA NEOTROPICAL, 12(4). https://doi.org/10.32404/rean.v12i4.9137