CAN ASCORBIC ACID INDUCE SALT TOLERANCE IN RICE SEEDS AND SEEDLINGS?

Authors

DOI:

https://doi.org/10.32404/rean.v12i3.9358

Keywords:

Attenuator, Physiological Quality, Salinity, Vitamin C

Abstract

Soil salinity is one of the abiotic stresses that affect crops. Therefore, rice seeds are susceptible to this stressor during germination, involving several physiological aspects. This study aimed to evaluate the salt tolerance induced by ascorbic acid in rice seeds and seedlings. The water content of rice seeds was determined, followed by two tests with seeds treated in ascorbic acid solution and dry powder at doses of 0 (control), 10, 20, 30, and 40 mg for 24 hours. Sowing occurred under salt stress conditions (NaCl, -0.6 MPa). Physiological quality was evaluated. The collected data were subjected to analysis of variance. Ascorbic acid doses were compared using a regression analysis, seedling length was examined under a 3x4 factorial scheme (three evaluation times x four doses of ascorbic acid), and times points were correlated using Tukey’s test. The findings indicated that the exogenous application of ascorbic acid implies salt stress tolerance. Ascorbic acid doses lower than 20 mg applied to rice seeds induce salt tolerance during germination and initial seedling development, with better physiological quality for seeds treated in the antioxidant solution.

Author Biographies

Danúbia Aparecida Costa Nobre , Universidade Federal dos Vales do Jequitinhonha e Mucuri

Universidade Federal dos Vales do Jequitinhonha e Mucuri, câmpus JK, Diamantina, Minas Gerais, Brasil.

Ana Clara da Silva Ribeiro , Universidade Estadual de Montes Claros

Universidade Estadual de Montes Claros, câmpus Janaúba, Janaúba, Minas Gerais, Brasil.

Jaíne Meriele Ribeiro Domingues , Universidade Estadual de Montes Claros

Universidade Estadual de Montes Claros, câmpus Janaúba, Janaúba, Minas Gerais, Brasil.

Cleisson Dener da Silva , Universidade Estadual de Montes Claros

Universidade Estadual de Montes Claros, câmpus Janaúba, Janaúba, Minas Gerais, Brasil.

Andréia Márcia Santos de Souza David , Universidade Estadual de Montes Claros

Universidade Estadual de Montes Claros, câmpus Janaúba, Janaúba, Minas Gerais, Brasil.

Caroline Salezzi Bonfá , Universidade Federal dos Vales do Jequitinhonha e Mucuri

Universidade Federal dos Vales do Jequitinhonha e Mucuri, câmpus JK, Diamantina, Minas Gerais, Brasil.

References

(I) Aguiar Netto, A.O., Gomes, C.C.S., Lins, C.C.V., Barros, A.C., Campeche, L.F.S.M., Blanco, F.F., 2007. Características químicas e salino-sodicidade dos solos do Perímetro Irrigado Califórnia, SE, Brasil. Ciência Rural, 37(6), 1640-1645. https://doi.org/10.1590/S0103-84782007000600021

(II) Ahmad, I., Khaliq, T., Ahmad, A., Basra, S.M.A., Hasnain, Z., Ali, A., 2012. Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. African Journal of Biotechnology, 11(5), 1127-1132. https://doi.org/10.5897/AJB11.2266

(III) Alamri, S.A., Siddiqui, M.H., Al-Khaishani M.Y., Ali, H.M., 2018. Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Scientific Agriculture, 2(5), 36-42.

(IV) Alves, D.R., Viana, A.J.S., Andrade, J.C.A., Costa, M.R., Nobre, D.A.C., 2024. Natural antioxidants: salinity attenuators and bio-stimulants. Brazilian Journal of Biology, 84, 1-9. https://doi.org/10.1590/1519-6984.279415

(V) Athar, H.-u.-R., Khan A., Ashraf. M., 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 63(1-3), 224–231. https://doi.org/10.1016/j.envexpbot.2007.10.018

(VI) Bajji, M., Kinet, J.M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36(1), 61-70. https://doi.org/10.1023/A:1014732714549

(VII) Barbosa, M.R., Silva, M.M.A., Willadino L., Ulisses, C., Camara, T.R., 2014. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural, 44(3), 453-460. https://doi.org/10.1590/S0103-84782014000300011

(VIII) Behairy, R.T., El-Danasoury, M., Craker, L., 2012. Impact of Ascorbic Acid on Seed Germination, Seedling Growth, and Enzyme Activity of Salt-Stressed Fenugreek. Journal of Medicinally Active Plants, 1(3), 106-113. https://doi.org/10.7275/R5TT4NW9

(IX) Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., 2013. Seeds - physiology of development, germination and dormancy, third ed. New York: Springer. 405p.

(X) Brasil. Ministério da Agricultura, Pecuária e Abastecimento, 2009. Regras para Análise de Sementes, first ed. Brasília, Secretaria de Defesa Agropecuária. Mapa/ACS. 399p.

(XI) Buckeridge, M.S., Santos, H.P., Tiné, M.A.S., Aidar, M.P.M., 2004. Mobilização de reservas. In: Ferreira, A. G. e Borghetti, F. (Org.) Germinação: Do básico ao aplicado. Porto Alegre: ARTMED, p. 163-185.

(XII) Carvalho, N.M., Nakagawa, J., 2012. Sementes: ciência, tecnologia e produção, fifth ed. Jaboticabal: FUNEP. 590p.

(XIII) Cavalcante, J.A., Reolon, F., Moraes, C.L., Ternus, R.M., Silva, R.N.O., Martins, A.B.N., Moraes, D.M., 2019. Potencial fisiológico de sementes de duas cultivares de arroz em resposta ao estresse salino. Revista de Ciências Agrárias, 42(1), 184-193. https://doi.org/10.19084/RCA17279

(XIV) Chen, Z., Cao, X-L., Niu, J-P., 2021. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS ONE, 16 (4), 1-16. https://doi.org/10.1371/journal.pone.0250926

(XV) Coelho, D.L.M., Agostini, E.A.D., Guaberto, L.M., Machado Neto, N.M., Custódio, C.C., 2010. Estresse hídrico com diferentes osmóticos em sementes de feijão e expressão diferencial de proteínas durante a germinação. Acta Scientiarum. Agronomy, 32(3), 491-499. http://dx.doi.org/10.4025/actasciagron.v32i3.4694

(XVI) Fermiano, S.P., Kaseker, J.F., Nohatto, M.F., Oliveira, J.D., Rosa, E.F.F., Nunes, D.H., 2018. Aplicação de ácido salicílico em plantas de arroz submetidas a competição com arroz vermelho. Agropecuária Científica no Semiárido, 14(3), 198-203. http://dx.doi.org/10.30969/acsa.v14i3.990

(XVII) Ferreira, D.F., 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

(XVIII) Guimarães, M.A., Dias, D.C.F.S., Loureiro, M.E., 2008. Hidratação de sementes. Revista Trópica - Ciências Agrárias e Biológicas, 2(1), 31-39.

(XIX) Hameed, A., Gulzar, S., Aziz, I., Hussain, T., Gul, B., Khan, M.A., 2015. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants, 7. https://doi.org/10.1093/aobpla/plv004

(XX) Hopmans, J.W., Qureshi, A.S., Kisekka, I., Munns, R., Grattan, S.R., Rengasamy, P., Ben-Gal, A., ASsouline, S., Javaux, M., Minhas, P.S., Raats, P.A.C., Skaggs, T.H., Wang, G., Jong Van Lier, Q., Jiao, H., Lavado, R.S., Lazarovitc, N., LI, B., Taleisnik, E., 2021. Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1-191. https://doi.org/10.1016/bs.agron.2021.03.001

(XXI) Kandil, A.A., Shareif, A.E., Gad, M.A., 2017. Effect of salinity on germination and seedling parameters of forage cowpea seed. Research Journal of Seed Science, 10(1), 17-26. https://scialert.net/abstract/?doi=rjss.2017.17.26

(XXII) Kamran, A., Mushtaq, M., Arif, M., Rashid, S., 2023. Role of biostimulants (ascorbic acid and fulvic acid) to synergize Rhizobium activity in pea (Pisum sativum L. var. Meteor). Plant Physiology and Biochemistry, 196, 668-682. https://doi.org/10.1016/j.plaphy.2023.02.018

(XXIII) Khan, M.A., Ahmed, M.Z., Hameed, A., 2006. Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. Journal of Arid Environments, 67(3), 535-540. https://doi.org/10.1016/j.jaridenv.2006.03.001

(XXIV) Kka, N., Rookes, J., Cahill, D., 2018. The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana. Plant Physiology and Biochemistry, 129, 323-330. https://doi.org/10.1016/j.plaphy.2018.05.031

(XXV) Leite, R.S., Nascimento, M.N., Tanan, T.T., Ramos, C.A.S., Gonçalves Neto, L.P., Guimarães, D. S., 2018. Physiological responses of Physalis angulata plants to water deficit. Journal of Agricultural Science, 10(10), 287-297. https://doi.org/10.5539/jas.v10n10p287

(XXVI) Lemes, E., Mendonça, A., Dias, L., Brunes, A., Oliveira, S., Tunes, L., Albuquerque, A., 2018. Aplicação de sílicio no solo: efeito na expressão enzimática de sementes oriundas de plantas de arroz sob estresse salino. Colloquium Agrariae. 14(1), 129-136. https://doi.org/10.5747/ca.2018.v14.n1.a197

(XXVII) Marcos Filho, J., 2015. Fisiologia de sementes de plantas cultivadas, second ed. ABRATES, Londrina. 659p.

(XXVIII) Martins, A.C., Larré, C.F., Bortolini, F., Borella, J., Eichholz, R., Delias, D., Amarante, L., 2018. Tolerância ao déficit hídrico: adaptação diferencial entre espécies forrageiras. Iheringia, Série Botânica, 73(3), 228-239. https://doi.org/10.21826/2446-8231201873302

(XIX) Melloni, M.L.G., Cruz, F.J.R., Santos, D.M.M., Souza, L.F.G., Silva, J., Saccini, V.A.V., Monteiro, J.G., 2012. Espermidina exógena atenua os efeitos do NaCl na germinação e crescimento inicial de leguminosas forrageiras. Revista Brasileira de Sementes, 34(3), p.495-503. https://doi.org/10.1590/S0101-31222012000300018

(XXX) Niu, J., Xu, M., Zong, N., Sun, J., Zhao, L., Hui, W. 2024. Ascorbic acid releases dormancy and promotes germination by an integrated regulation of abscisic acid and gibberellin in Pyrus betulifolia seeds. Physiologia Plantarum. 176, e14271. https://doi.org/10.1111/ppl.14271

(XXXI) Nobre, D.A.C., Silva, M.B., Macedo, W.R., Costa, M.R., Napoleão, R.L., 2022. Turmeric powder: biostimulator from expired lettuce seeds? Brazilian Journal of Biology, 82, 1-3. https://doi.org/10.1590/1519-6984.265809

(XXXII) Omuto, C.T., Vargas, R.R., El Mobarak, A.M., Mohamed, N., Viatkin, K., Yigini, Y., 2020. Mapping of salt-affected soils: Technical manual. Rome, FAO. 112p. https://doi.org/10.4060/ca9215en

(XXXIII) Ruzzi, M., Colla, G., Rouphael, Y., 2024. Editorial: Biostimulants in agriculture II: towards a sustainable future, Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1427283

(XXXIV) Silva, T.I., Gonçalves, A.C.M., Melo Filho, J.S., Alves, W.S., Basilio, A.G., Figueiredo, F.R.A., Dias, T.J., Blank, A.F., 2019. Echophysiological aspects of Ocimum basilicum under saline stress and salicylic acid. Revista Brasileira de Ciências Agrárias, 14(2), 1-9. https://doi.org/10.5039/agraria.v14i2a5633

(XXXV) Silva, C.D., David, A.M.S.S., Alves, D.D., Conceição, E.R.S., Paraizo, E.A., Soares, L.M., Nobre, D.A.C., Figueiredo, J.C., 2023. The physiological potential of marandu grass seeds under water stress conditioned with ascorbic acid. Acta Biológica Colombiana, 28(1), 29–38. https://doi.org/10.15446/abc.v28n1.96946

(XXXVI) Stefanello, R., Goergen, P.C.H., Neves, L.A.S. Resposta fisiológica de sementes de alcachofra ao estresse salino. Cultura Agronômica, v.27, n.4, p. 463-470. 2018. http://dx.doi.org/10.32929/2446-8355.2018v27n4p463-470

(XXXVII) Vibhuti, S.C., Kiran, B., Bargali, S.S., 2015. Assessment of salt stress tolerance in three varieties of rice (Oryza sativa L.). Journal of Progressive Agriculture, 6(1), 50-56.

(XXXVIII) Ye, N., Zhu, G., Liu, Y., Zhang, A., Li, Y., Liu, R., Shi, L., Jia, L., Zhang, J. 2012. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 63(5), 1809-1822. https://doi.org/10.1093/jxb/err336

(XXXIX) Zehra, A., Shaikh, F., Ansari, R., Gul, B., Khan, M.A., 2012. Effect of ascorbic acid on seed germination of three halophytic grass species under saline conditions. Grass and Forage Science, 68, 339-344. https://doi.org/10.1111/j.1365-2494.2012.00899.x

Downloads

Published

2025-08-15

How to Cite

Aparecida Costa Nobre , D., da Silva Ribeiro , A. C., Ribeiro Domingues , J. M., da Silva , C. D., Santos de Souza David , A. M., & Salezzi Bonfá , C. (2025). CAN ASCORBIC ACID INDUCE SALT TOLERANCE IN RICE SEEDS AND SEEDLINGS?. REVISTA DE AGRICULTURA NEOTROPICAL, 12(3). https://doi.org/10.32404/rean.v12i3.9358