MATHEMATICAL MODELING, VOLUMETRIC SHRINKAGE, AND THERMODYNAMIC PROPERTIES OF ACEROLA FRUIT DRYING

Authors

DOI:

https://doi.org/10.32404/rean.v12i4.9539

Keywords:

Conservation, Energy, Fruits, Processing

Abstract

Brazil is the largest producer, consumer, and exporter of acerola fruit, but there is significant post-harvest waste due to the fruit’s high water content and perishability. This study aimed to evaluate and model the drying phenomenon at different temperatures, volumetric shrinkage, and process energy through thermodynamic properties. For the drying process, a forced-air circulation oven was used. The fruits were weighed during this process, and their axes were measured until a constant value was reached. Finally, the thermodynamic properties were calculated for each temperature. The Midilli and Adapted Exponential models best fit the experimental data for the drying kinetics and volumetric shrinkage of acerola fruits, respectively. Additionally, during the drying process, increasing the temperature led to a decrease in ∆h and ∆s and an increase in ∆G. In conclusion, raising the drying air temperature significantly influences the drying time of acerola, reducing the energy required to remove water, increasing system order, and enhancing the non-spontaneity of the process.

Author Biographies

José Renato Robles Padilla, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Sthefany dos Santos Maidana Palacios, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Pedro Henrique Toledo da Costa, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Carla Simone Araújo Gomes Sarmento, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Emerson Gomes Ferreira, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Ednilton Tavares de Andrade, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

Filipe da Silva de Oliveira, Universidade Federal de Lavras

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil.

References

(I) Amin, K., Islam, A., Akter, F., Islam, N., 2019. Kinetics of air drying of jackfruit and mango pulp and development of mixed leather. Fundamental and Applied Agriculture, 4, 1089-1096. https://doi.org/10.5455/faa.72409

(II) Babalis, S.J. Belessiotis, V.G., 2004. Influence of the Drying Conditions on the Drying Constants and Moisture Diffusivity during the Thin-Layer Drying of Figs. Journal of Food Engineering, 65, 449-458. http://dx.doi.org/10.1016/j.jfoodeng.2004.02.005

(III) Bojanic, A., 2021. Pérdida y el desperdicio de alimentos en la seguridad alimentaria y nutricional. In: CONAB. Perdas em transporte e armanenagem de grãos: panorama atual e perspectivas. Brasília, DF: Conab. p. 15-17. Available at: http://www.conab.gov.br

(IV) BRASIL, 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes / Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília: Mapa/ACS. 399

(V) Caixeta-Filho, J.C, Péra, T.G., 2018. Post-harvest losses during the transportation of grains from farms to aggregation points. Int. J. Logistics Economics and Globalisation. 7(3), 38. https://doi.org/10.1504/IJLEG.2018.093755

(VI) Chen, C., Jayas, D.S. (1998). Dynamic equilibrium moisture content for grain drying. Canadian Agricultural Engineering, 40, 299-304.

(VII) Corrêa, P.C., Machado, P.F., Andrade, E.D., 2001. Cinética de secagem e qualidade de grãos de milho-pipoca. Ciência e Agrotecnologia, 25(1), 134-142.

(VIII) Curcio, S., Aversa, M. (2014). Influence of shrinkage on convective drying of fresh vegetables: A theoretical model. Journal of Food Engineering, 123, 36-49. https://doi.org/10.1016/j.jfoodeng.2013.09.014

(IX) D’Andrea, E.M., Andrade, E.T., Corrêa-Filho, L.C., Sousa, F.A., Figueira, V.G., 2015. Análise da cinética de secagem, contração volumétrica e difusão líquida da acerola “in natura”. Revista Brasileira de Produtos Agroindustriais, 17(4), 399-408. https://doi.org/10.15871/1517-8595/rbpa.v17n4p399-408

(X) Dala-Paula, B.M., Santos, T.P.D., Araújo, L.D.S., Bastos, R.R.A., Moraes, J.D.O., Carbonera, N., 2019. Domestic processing and storage on the physical-chemical characteristics of acerola juice (Malpighia glabra L.). Ciência e Agrotecnologia, 43, e021519. https://doi.org/10.1590/1413-7054201943021519

(XI) Duc Pham, N., Khan, M.I.H., Joardder, M.U.H., Rahman, M.M., Mahiuddin, M., Abesinghe, A.M.N., Karim, M.A., 2019. Quality of plant-based food materials and its prediction during intermittent drying. Critical reviews in food science and nutrition, 59(8), 1197–1211. https://doi.org/10.1080/10408398.2017.1399103

(XII) El-Mesery, H.S., Hu, Z., Ashiagbor, K., Rostom, M., 2024. A study into how thickness, infrared intensity, and airflow affect drying kinetics, modeling, activation energy, and quality attributes of apple slices using infrared dryer. Journal of food science, 89(5), 2895–2908. https://doi.org/10.1111/1750-3841.17064

(XIII) Ertekin, C., Firat, M.Z., 2017. A comprehensive review of thin-layer drying models used in agricultural products. Critical reviews in food science and nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493

(XIV) Estevam, M.I.F., Souza, P.A., Maracajá, P.B, Batista, E.M., Reges, B.M., 2018. Físico-química de variedades de acerola em dois estádios de maturação. Revista Verde, 13(4), 459-465. https://doi.org/10.18378/rvads.v13i4.5736

(XV) FAO. World Food and Agriculture – Statistical Yearbook 2023. Rome, 2023. https://doi.org/10.4060/cc8166en

(XVI) Ferreira Junior, W.N., Resende, O., Pinheiro, G.K., Silva, L.C.D.M., Souza, D.G., Sousa, K.A.D., 2020. Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 37-43. https://doi.org/10.1590/1807-1929/agriambi.v25n1p37-43

(XVII) Ferreira, E.A., Neto, A.F., Costa, M.S., Costa, J. D.S., Coelho, B.E. S., Morais, D.Y.N., 2021a. Contração volumétrica da Uva 'Itália'. Revista em Agronegócio e Meio Ambiente, 14(2), 315-323. https://doi.org/10.17765/2176-9168.2021v14n2e8024

(XVIII) Ferreira, I.C., Silva, V.P., Vilvert, J.C., Souza, F.F., Freitas, S.T., Lima, M.S. 2021b. Brazilian varieties of acerola (Malpighia emarginata DC.) produced under tropical semi-arid conditions: Bioactive phenolic compounds, sugars, organic acids, and antioxidant capacity. Journal of food biochemistry, 45(8), e13829. https://doi.org/10.1111/jfbc.13829

(XIX) Ferreira, R.M.A., Aroucha, E.M.M., Souza, P.A., Queiroz, R.F. 2009. Ponto de colheita da acerola visando à produção industrial de polpa. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 4(2), 5.

(XX) Freitas, S.T., Barbosa, M.A.G., Rybka, A.C.P., 2020. Colheita e pós-colheita de acerola para o consumo in natura. Embrapa. Circular técnica, n. 123.

(XXI) Garcia, V.A.D.S., Borges, J.G., Vanin, F.M., Carvalho, R.A.D. 2020. Vitamin C stability in acerola and camu-camu powder obtained by spray drying. Brazilian Journal of Food Technology, 23, e2019237. https://doi.org/10.1590/1981-6723.23719

(XXII) Gonzaga, N.A., Azarias, E.C.P., Salvador, R.C., Muniz, J.A., Silva, E.M., Fernandes, T.J., 2024. Descrição da cinética de secagem de grãos de milho-pipoca por modelos de regressão não linear. Revista Foco, 17(1) e4176-e4176. https://doi.org/10.54751/revistafoco.v17n1-094

(XXIII) Henderson, S.M., Pabis, S., 1961. Grain drying theory. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), 169- 174.

(XXIV) Isquierdo, E.P., Siqueira, V.C., Borém, F.M., Andrade, E.T., Luz, P.B., Quequeto, W.D., 2020. Isotermas de sorção e propriedades termodinâmicas de sementes de maracujá doce. Research, Society and Development, 9(5), e44952884-e44952884. https://doi.org/10.33448/rsd-v9i5.2884

(XXV) Jiang, N., Liu, C., Li, D., Zhang, Z., Liu, C., Wang, D., Niu, L., Zhang, M., 2017. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT - Food Science and Technology, 82(1), 216-226. https://doi.org/10.1016/j.lwt.2017.04.015

(XXVI) Jideani, V.A., Mpotokwana, S.M., 2009. Modeling of water absorption of Botswana bambara varieties using Peleg’s equation. Journal of Food Engineering, 92, 182-188. https://doi.org/10.1016/j.jfoodeng.2008.10.040

(XXVII) Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G., 2007. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. https://doi.org/10.1016/j.jfoodeng.2005.09.007

(XXVIII) Lewis, W.K., 1921. The drying of solid materials. Journal Industrial Engineering, 13(5), 427-33.

(XXIX) Li, H., Xie, L., Ma, Y., Zhang, M., Zhao, Y., Zhao, X., 2018. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT - Food Science and Technology, 101, 630-638. https://doi.org/10.1016/j.lwt.2018.11.076

(XXX) Madamba, P.S., Driscoll, R.H., Buckle, K.A., 1996. Thin-layer drying characteristics of garlic slices. Journal of Food Engineering, Essex, 29(1), 75-97. https://doi.org/10.1016/0260-8774(95)00062-3

(XXXI) Mahanta, B.P., Bora, P.K., Kemprai, P., Borah, G., Lal, M., Haldar, S., 2021. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food research international (Ottawa, Ont.), 145, 110404. https://doi.org/10.1016/j.foodres.2021.110404.

(XXXII) Mayor, L., Sereno, A.M. 2004. Modelling shrinkage during convective drying of food materials: a review. Journal of food engineering, 61(3), 373-386. https://doi.org/10.1016/S0260-8774(03)00144-4

(XXXIII) Midilli, A., Kucuk, H., Yapar, Z., 2002. New model for single-layer drying. Drying technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864

(XXXIV) Miskinis, R.A.S., Nascimento, L.A., Colussi, R., 2023. Bioactive compounds from acerola pomace: a review. Food chemistry, London, 404, 134613. https://doi.org/10.1016/j.foodchem.2022.134613

(XXXV) Moreira-Araújo, R.S.R., Barros, N.V.A., Porto, R.G.C.L., Brandão, A. C.A.S., Lima, A., Fett, R., 2019. Bioactive compounds and antioxidante activity three fruit species from the Brazilian Cerrado. Revista Brasileira de fruticultura, Jaboticabal, 41(3), 1-8. https://doi.org/10.1590/0100-29452019011

(XXXVI) Nadew, T.T., Tedla, T.S., Bizualem, Y.D., Abate, S.N., Teklehaymanot, L.T., 2024. Data on drying kinetics, moisture sorption isotherm, composition study of Ethiopian oyster mushroom (Pleurotus ostreatus mushroom) drying in tray dryer. Data in brief, 56, 110861. https://doi.org/10.1016/j.dib.2024.110861

(XXXVII) Nadi, F. Tzempelikos, D., 2018. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters. Heat and Mass Transfer, 54(7), 1853-1866. https://doi.org/10.1007/s00231-018-2279-5

(XXXVIII) Oliveira, G.H.H., Aragão, D.M.S., Oliveira, A.P.L. R., Silva, M. G., Gusmão, A.C.A., 2015. Modelagem e propriedade termodinâmicas na secagem de morangos. Brazilian Journal of Food Technology, 18, 314-321. https://doi.org/10.1590/1981-6723.5315

(XXXIX) Onwude D.I., Hashim N., Janius R.B., Nawi N.M., Abdan K., 2016. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr Rev Food Sci Food Saf. 15(3), 599-618. https://doi.org/10.1111/1541-4337.12196

(XL) Prakash, A., Baskaran, R., 2018. Acerola, an untapped functional superfruit: a review on latest frontiers. Journal of food science and technology, 55, 3373-3384. https://doi.org/10.1007/s13197-018-3309-5

(XLI) R CORE TEAM, 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/

(XLII) Rabello, A.A., Resende, Ú.C., Gomes, F.D.C.O., Machado, A.M.R., Martins, E.C., Soares, Í.V., 2021. Utilização da radiação infravermelha na secagem de amostras de banana. Brazilian Journal of Development, 7(4), 39317-39330. https://doi.org/10.34117/bjdv7n4-407

(XLIII) Reyer, S., Awiszus, S., Meissner, K., Müller, J., 2020. High precision laboratory dryer for thin layer and bulk drying with adjustable temperature, relative humidity and velocity of the drying air. HardwareX, 8, e00133. https://doi.org/10.1016/j.ohx.2020.e00133.

(XLIV) Rezende, Y.R.R.S., Nogueira, J.P., Narain, N., 2017. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agroindustrial acerola (Malpighia emarginata DC) residue. LWT – Food Science and Technology, 85, 158-169. https://doi.org/10.1016/j.lwt.2017.07.020

(XLV) Santos, D.D.C., Leite, D.D.D.F., Lisbôa, J.F., Ferreira, J.P.D.L., Santos, F.S.D., Lima, T.L.B.D., Costa, T.N.D., 2019. Modelagem e propriedades termodinâmicas da secagem de fatias de acuri. Brazilian Journal of Food Technology, 22, e2018031. https://doi.org/10.1590/1981-6723.03118

(XLVI) Santos, F.S., Figueirêdo, R.M.F., Queiroz, A. J.M., Reis, C.G., Amadeu, L.T.S., Silva, L.P.F.R., Lima, T.L.B., 2021. Modelagem matemática e propriedades termodinâmicas na secagem do quiabo. Revista de Ciências Agrárias, 44(1). https://doi.org/10.5555/20210424489

(XLVII) Santos, P.H.S., Villwock, A.P.S. 2024. Análise da viabilidade econômica do cultivo de acerola em propriedade familiar do estado de Sergipe. Exten. Rur., Santa Maria, 31, e71667-e71667. https://doi.org/10.5902/2318179671667

(XLVIII) Silva, P.C.C., Pereira, W.E., Alexandre, P.S., Lima, M.L.S., Alexandre, C.S., Cruz, J.O., Silva, N.C.C., 2016. Crescimento de mudas de Malpighia emarginata em diferentes substratos. Engenharia Ambiental: Pesquisa e Tecnologia, 13(2), 80-87. Available at: http://ferramentas.unipinhal.edu.br/engenhariaambiental/viewarticle.php?id=1381

(XLIX) Silva, R.A.M., Martins, J.H., Mata, M.E.C., Duarte, M.E.M., 2021b. Use of diffusive and empirical models to predict drying rate of acerola seeds (Malpighia sp.). Global Journal of Engineering and Technology Advances, 8(1), 096-109. https://doi.org/10.30574/gjeta.2021.8.1.0098

(L) Silva, V.M.A., Santos, N.C., Ribeiro, V.H.A., Almeida, R.L.J., Silva, G.M., Queiroga, A.P.R., Brito, A.C.O., 2021a. Acerola thermophysical properties, drying and new product development. Campina Grande: EPTEC. 102p. Available at: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/27057

(LI) Sousa, F.C., Rocha, A.P.T, Gomes, J.P., Martins, J.J.A., Martins, J.N., 2014. Isotermas de dessorção de folhas in natura de juazeiro e mororó. Pesquisa Agropecuária Tropical. 44(3), 304-310. https://doi.org/10.1590/S1983-40632014000300009

(LII) Teles, A.S.C., Chávez, D.W.H., Gomes, F.S., Cabral, L.M.C., Tonon, R.V., 2017. Effect of temperature on the degradation of bioactive compounds of Pinot Noir grape pomace during drying. Brazilian Journal of Food Technology, Campinas, 21. https://doi.org/10.1590/1981-6723.5917

(LIII) Vilvert, J.C., Freitas, S.T., Santos, L.F.S., Ribeiro, T.D., Veloso, C.M., 2024. Phenolic compounds in acerola fruit and by-products: An overview on identification, quantification, influencing factors, and biological properties. Journal of Food Measurement and Characterization, 18(1), 216-239. https://doi.org/10.1007/s11694-023-02175-1

(LIV) Yamchi, A.A, Sharifian, F., Khalife, E., Kaveh, M., 2024. Drying kinetic, thermodynamic and quality analyses of infrared drying of truffle slices. Journal of food science, 89(6), 3666–3686. https://doi.org/10.1111/1750-3841.17096

(LV) Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D., 1996. Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14, 2225-2253. https://doi.org/10.1080/07373939608917205

Published

2025-11-11

How to Cite

Robles Padilla, J. R., dos Santos Maidana Palacios, S., Toledo da Costa, P. H., Araújo Gomes Sarmento, C. S., Gomes Ferreira, E., Tavares de Andrade, E., & da Silva de Oliveira, F. (2025). MATHEMATICAL MODELING, VOLUMETRIC SHRINKAGE, AND THERMODYNAMIC PROPERTIES OF ACEROLA FRUIT DRYING. REVISTA DE AGRICULTURA NEOTROPICAL, 12(4). https://doi.org/10.32404/rean.v12i4.9539