AGRONOMIC PERFORMANCE OF WHEAT CULTIVARS UNDER WATER DEFICIT IN THE CERRADO: ADAPTATION AND SUSTAINABILITY

Authors

DOI:

https://doi.org/10.32404/rean.v12i4.9471

Keywords:

Water, Efficiency , Yield, Triticum aestivum, Moisture

Abstract

Wheat production faces limitations due to water constraints, in which climate variability impairs cultivation. This study evaluated the agronomic performance of three wheat cultivars (BRS264, BRS394 and BRS404) subjected to water stress gradients (12, 24, 36, 48 and 60 kPa) under controlled Cerrado conditions. The experiment, which was conducted in a greenhouse in Cuiabá, Brazil, used a randomized block design with a 5×3 factorial scheme and electrical capacitance sensors to monitor soil moisture. Shoot dry mass, root dry mass, grain yield and water use efficiency were analyzed. Tukey's tests and regression analyses revealed differences between cultivars: BRS394 presented better overall performance at 24 kPa, with increases of 20.1% in shoot dry mass, 70.8% in grain yield and 80% in water efficiency, whereas BRS264 presented better water efficiency at 12 kPa (40% increment). The comparative analysis revealed that 12 kPa resulted in less stress to the cultivars, with a significant decline in the parameters from 24 kPa, accentuating above 36 kPa. These results show that BRS394 adapts better to moderate water restriction (24 kPa), whereas BRS264 has better performance with greater water availability (12 kPa); both cultivars surpassed BRS404 in most of the parameters evaluated; and differentiated irrigation strategies are essential, prioritizing greater water availability for BRS264 and moderate restriction for BRS394 for the good development of wheat cultivation.

Author Biographies

Paulo Otávio Aldaves dos Santos Guedes, Universidade Federal de Mato Grosso

Universidade Federal de Mato Grosso, câmpus Cuiabá, Cuiabá, Mato Grosso, Brasil.

Tonny José Araújo da Silva, Universidade Federal de Rondonópolis

Universidade Federal de Rondonópolis, Rondonópolis, Mato Grosso, Brasil.

Carlos Caneppele, Universidade Federal de Mato Grosso

 Universidade Federal de Mato Grosso, câmpus Cuiabá, Cuiabá, Mato Grosso, Brasil.

Edna Maria Bonfim da Silva, Universidade Federal de Rondonópolis

Universidade Federal de Rondonópolis, Rondonópolis, Mato Grosso, Brasil.

References

(I) Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at the tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8:4615. https://doi.org/10.1038/s41598-018-21441-2

(II) Ahmed, I., Ullah, A., Rahman, M.H.U., Ahmad, B., Wajid, S. A., Ahmad, A., Ahmed, S. 2019. Climate change impacts and adaptation strategies for agronomic crops. Climate Change and Agriculture, 1-14. https://doi.org/10.5772/intechopen.82697

(III) Ali, S., Xu, Y., Jia, Q., Ahmad, I., Wei, T., Ren, X., Zhang, P., Din, R., Cai, T., Jia, Z. 2018. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agricultural Water Management, 201, 207-218. https://doi.org/10.1016/j.agwat.2018.01.017

(IV) Albrecht, J.C. 2021. Wheat cultivar BRS 264: precocity, industrial quality and high yields for the cerrado of Central Brazil (Technical Circular 49). Embrapa Cerrados.

(V) Albrecht, J.C., Chagas, J.H., Sobrinho, J.S., Scheeren, P.L., Fronza, V. 2020. Trigo BRS 394: cultivar para o Cerrado do Brasil Central (Circular Técnica 44). Embrapa Cerrados.

(VI) Albrecht, J.C., Silva, M.S., Andrade, J.M.V., Scheeren, P.L., Trindade, M.G., Sobrinho, J.S., Sousa, C.N.A., Braz, A.J.B. P., Ribeiro Júnior, W.Q., Sousa, M.A., Fronza, V., Yamanaka, C.H. 2006. Wheat BRS 264: Early cultivar with high grain yield indicated for the Cerrado of Central Brazil (Documents 174). Embrapa Cerrados.

(VII) Awan, S.A., Khan, I., Rizwan, M., Zhang, X., Brestic, M., Khan, A., El-Sheikh, M.A., Alyemeni, M.N., Ali, S., Huang, L. 2021. Exogenous abscisic acid and jasmonic acid restrain polyethylene glycol-induced drought by improving the growth and antioxidative enzyme activities in pearl millet. Physiologia Plantarum, 172(2), 809–819. https://doi.org/10.1111/PPL.13247

(VIII) Bonfim-Silva, E.M., Silva, T.J.A., Cabral, C.E.A., Kroth, B. E., Rezende, D. 2011. Initial development of grasses subjected to water stress. Caatinga Magazine, 24(2), 180-186.

(IX) Chagas, J.H., Sobrinho, J.S., Pires, J.L.F., Silva, M.S., Albrecht, J.C., Cunha, G.R, Moresco, E.R. 2018. Informações fitotécnicas para potencializar o desempenho produtivo da cultivar de trigo BRS 404 no Cerrado do Brasil Central (Circular Técnica 33). Embrapa Trigo.

(X) Chen, F., Zhang, K., Yan, S., Wang, R., Wang, H., Zhao, H., Qi, Y., Yang, Y., Wei, X., Tang, Y. 2025. Response of photosynthesis response to light and CO2 concentration in spring wheat under progressive drought stress. BMC Plant Biology, 25(1), 324. https://doi.org/10.1186/s12870-025-06355-7

(XI) CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO, 2023. Monitoramento da safra de grãos brasileira: safra 2023/24, Brasília, Ministério da Agricultura, Pecuária e Abastecimento, 11(12).

(XII) Cordeiro, M.B., Dallacort, R., Freitas, P.S.L., Junior, S.S., Santi, A., Fenner, W. 2015. Aptidão agroclimática do trigo para as regiões de Rondonópolis, São José do Rio Claro, São Vicente e Tangará da Serra, Mato Grosso, Brasil. Revista Agro@mbiente On-line, 9(1), 96-101. https://doi.org/10.18227/1982-8470ragro.v9i1.2177

(XIII) Dourado-Neto, D., Nielsen, D.R., Hopmans, J.W., Reichardt, K., Bacchi, O.O.S., Lopes, P.P. 2000. Software to model soil water retention curves (SWRC, version 2.00). Scientia Agrícola, 57(1), 191-192. https://doi.org/10.1590/S0103-90162000000100031

(XIV) Fan, Y., Wang, X., Chen, R., Dang, H., Liu, H. 2023. Differences in Water Consumption and Yield Characteristics among Winter Wheat (Triticum aestivum L.) Varieties under Different Irrigation Systems. Applied Sciences, 13(7), 4396. https://doi.org/10.3390/app13074396

Fathi, A., Tari, D. B. 2016. Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1-6. https://10.3126/ijls.v10i1.14509

(XV) García-Núñez, C., Pirela, M., Fariñas, M., Azócar, A. 2019. Seasonal patterns of gas exchange and water relations in juveniles of two Neotropical savanna tree species differing in leaf phenology. Acta Oecologica, 95, 57-67. https://doi.org/10.1016/j.actao.2019.01.005

Gull, A., Lone, A.A., Wani, N.U.I. 2019. Biotic and abiotic stresses in plants. Abiotic and Biotic Stress in Plants, 1-19. https://doi.org/ 10.5772/intechopen.85832

(XVI) Hachisuca, A.M.M., Abdala, M.C., Souza, E.G., Rodrigues, M., Ganascini, D., Bazzi, C.L. 2023. Growing degree-hours and degree-days in two management zones for each phenological stage of wheat (Triticum aestivum L.). International Journal of Biometeorology, 67(7), 1169–1183. https://doi.org/10.1007/s00484-023-02486-4

(XVII) Helman, D., Lensky, I.M., Bonfil, D.J. 2019. Early prediction of wheat grain yield production from root-zone soil water content at heading using Crop RS-Met. Field Crops Research, 232, 11–23. https://doi.org/10.1016/j.fcr.2018.12.003

(XVII) Ibrahimova, U., Zivcak, M., Gasparovic, K., Rastogi, A., Allakhverdiev, S.I., Yang, X., Brestic, M. 2021. Electron and proton transport of electrons and protons in wheat exposed to salt stress: is the increase in proton conductivity of the thylakoid membrane responsible for the decrease in photosynthetic activity in sensitive genotypes? Research on Photosynthesis, 150, 195–211. https://doi.org/10.1007/s11120-021-00853-z

(XIX) Jha, S.K., Ramatshaba, T.S., Wang, G., Liang, Y., Liu, H., Gao, Y., Duan, A. 2019. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agricultural Water Management, 217, 292-302. https://doi.org/10.1016/j.agwat.2019.03.011

(XX) Khadka, K., Earl, H.J., Raizada, M.N., Navabi, A. 2020. A physio-morphological trait-based approach for breeding drought tolerant wheat. Frontiers in Plant Science, 11, 715. https://doi.org/10.3389/fpls.2020.00715

(XXI) Langridge, P., Alaux, M., Almeida, N.F., Ammar, K., Baum, M., Bekkaoui, F., Bentley, A.R., Beres, B.L., Berger, B., Braun, H.J., Brown-Guedira, G., Burt, C.J., Caccamo, M.J., Cattivelli, L., Charmet, G., Civáň, P., Cloutier, S., Cohan, J.-P., Devaux, P.J., Doohan, F.M., Dreccer, M.F., Ferrahi, M., Germán, S.E., Goodwin, S.B., Griffiths, S., Guzmán, C., Handa, H., Hawkesford, M.J., He, Z., Hutter, E., Ikeda, T.M., Kilian, B., King, I.P., King, J., Kirkegaard, J.A., Lage, J., Le Gouis, J., Mondal, S., Mullins, E., Ordon, F., Ortiz-Monasterio, J.I., Özkan, H., Öztürk, I., Pereyra, S.A., Pozniak, C.J., Quesneville, H., Quincke, M.C., Rebetzke, G.J., Reif, J.C., Saavedra-Bravo, T., Schurr, U., Sharma, S., Singh, S.K., Singh, R.P., Snape, J.W., Tadesse, W., Tsujimoto, H., Tuberosa, R., Willis, T.G., Zhang, X. 2022. Meeting the Challenges Facing Wheat Production: The Strategic Research Agenda of the Global Wheat Initiative. Agronomy, 12(11), 2767. https://doi.org/10.3390/agronomy12112767

(XXII) Li, J.P., Zhang, Z., Yao, C.S., Liu, Y., Wang, Z.M., Fang, B.T., Zhang, Y.H. 2021. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. Journal of Integrative Agriculture, 20(2), 606-621. https://doi.org/10.1016/S2095-3119(20)63407-4

(XXIII) Li, L., Wang, Z., Wan, W., Li, Z., Cai, J., Zhou, Q., Huang, M., Zhong, Y., Wang, X., Jiang, D. 2025. A novel, ridged enlarging lateral space drip irrigation pattern (ReDiP) for high-yield and WUE spring wheat in Xinjiang, China. Field Crops Research, 328, 109921. https://doi.org/10.1016/J.FCR.2025.109921

(XXIV) Liu, F., Kang, Z., Tan, X., Fan, Y., Tian, H., Liu, T. 2020. Physiology and defense responses of wheat to the infestation of different cereal aphids. Journal of Integrative Agriculture, 19(6), 1464–1474. https://doi.org/10.1016/s2095-3119(19)62786-3

Liu, Q., Zhang, X., Su, Y.H., Zhang, X.S. 2022. Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life, 12, 700. https://doi.org/10.20944/preprints202204.0117.v1

(XXV) Maqbool, M.M., Ali, A., Haq, T., Majeed, M.N., Lee, D.J. 2015. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad Journal of Agriculture, 31, 53–58. https://doi.org/10.23959/SFOWJ-1000003

Mondal, S., Dutta, S., Crespo-Herrera, L., Huerta-Espino, J., Braun, H.J., Singh, R.P. 2020. Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments. Field Crops Research, 250, 107757. https://doi.org/10.1016/j.fcr.2020.107757

(XXVI) Nir, I., Shohat, H., Panizel, I., Olszewski, N., Aharoni, A., Weiss, D. 2017. The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, 29(12), 3186-3197. https://doi.org/10.1105/tpc.17.00542

(XXVII) Pasinato, A., Cunha, G.R., Fontana, D.C., Monteiro, J.E.B.A., Nakai, A.M., Oliveira, A.F. 2018. Potential area and limitations for the expansion of rainfed wheat in the Cerrado biome of Central Brazil. Pesquisa Agropecuária Brasileira, 53(7), 779–790. https://doi.org/10.1590/s0100-204x2018000700001

(XXVIII) Pereira, J.F., Cunha, G.R., Moresco, E.R. 2019. Improved drought tolerance in wheat is required to unlock the production potential of the Brazilian Cerrado. Crop Breeding and Applied Biotechnology, 19(2), 217–225. https://doi.org/10.1590/1984-70332019v19n2r30

(XXIX) Ptošková, K., Szecówka, M., Jaworek, P., Tarkowská, D., Petřík, I., Pavlović, I., Novák, O., Thomas, S.G., Phillips, A. L., Hedden, P. 2022. Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC Plant Biology, 22(1), 284. https://doi.org/10.1186/s12870-022-03667-w

(XXX) Qadir, S.A., Khursheed, M., Huyop, F. 2016. Effect of water stress on the morphology, growth and yield of six bread wheat cultivars (Triticum aestivum L.). ZANCO Journal of Pure and Applied Sciences, 28, 37–48.

(XXXI) Raper, T.B., McClure, M.A., Butler, S., Yin, X., Blair, R. 2019. Impacts of Single- and a Multiple-Species Cover Crop on Soybean Relative to the Wheat-Soybean Double Crop System. Crop, Forage Turfgrass Management, 5(1), 180104. https://doi.org/10.2134/cftm2018.12.0104

(XXXII) Rebeaud, S.G., Jaylet, A., Cotter, P.-Y., Camps, C., Christen, D. 2019. A Multi-Parameter Approach for Apricot Texture Analysis. Agriculture, 9(4), 73. https://doi.org/10.3390/agriculture9040073

(XXXIII) Roque, W.F., Guimarães, S.L., Bonfim-Silva, E.M. 2024. Bactérias Nodulíferas Coinoculadas em Cultivares de Trigo Cultivado em Latossolo Vermelho do Cerrado. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde, 28(3), 369–375. https://doi.org/10.17921/1415-6938.2024v28n3p369-375

(XXXIV) Saeidi, M., Ardalani, S., Jalali-Honarmand, S., Ghobadi, M. E., Abdoli, M. 2015. Evaluation of drought stress at vegetative growth stage on the grain yield formation and some physiological traits as well as fluorescence parameters of different bread wheat cultivars. Acta Biologica Szeged, 59, 35–44.

(XXXVI) Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araujo Filho, J.C., Oliveira, J.B., Cunha, T.J.F., 2018. Brazilian Soil Classification System. 5th ed, rev. and exp., Brasília, DF: Embrapa.

(XXXVI) Sarto, M.V.M., Sarto, J.R.W., Rampim, L., Bassegio, D., Costa, P.F., Inagaki, A.M. 2017. Phenology of wheat and productivity under drought: a review. Australian Journal of Crop Science, 11(8), 941–946. https://doi.org/10.21475/ajcs17.11.08.pne351

(XXXVII) Sharada, H.B., Uday, G., Gopalreddy, K., Priyanka, K., Vishwasgowda, C., Nandeesh, J.R. 2024. Genetic diversity and trait association research in emmer wheat (Triticum dicoccum L.) germplasm lines for moisture stress. Genetic Resources and Crop Evolution, 72, 5515–5528. https://doi.org/10.1007/S10722-024-02286-8

(XXXVIII) Silverio, J.M., Silva, T.J.A., Bonfim-Silva, E.M., Iaia, A.M., Duarte, T.F., Pires, R.C.M. 2017. Drought tolerance of the sugar cane varieties during the initial development. Australian Journal of Crop Science, 11(6), 711-715. https://doi.org/10.21475/ajcs.17.11.06.p437

(XXXIX) Su, Y., Wu, F., Ao, Z., Jin, S., Qin, F., Liu, B., Pang, S., Liu, L., Guo, Q. 2019. Evaluating maize phenotype dynamics under drought stress using terrestrial lidar. Plant Methods, 15, 11. https://doi.org/10.1186/s13007-019-0396-x

(XL) Tavares, C.J., Ribeiro Junior, W.Q., Ramos, M.L.G., Pereira, L.F., Muller, O., Casari, R.A.C.N., Sousa, C.A.F., Silva, A.R. 2023. Water Stress Alters Physiological, Spectral, and Agronomic Indexes of Wheat Genotypes. Plants, 12(20), 3571. https://doi.org/10.3390/plants12203571

(XLI) Van Genuchten, M.T. 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.

(XLII) Vieira, E.A., Galvão, F.C.A., Barros, A.L. 2019. Influence of water limitation on the competitive interaction between two Cerrado species and the invasive grass Brachiaria brizantha cv. Piatã. Plant Physiology and Biochemistry, 135, 206-214. https://doi.org/10.1016/j.plaphy.2018.12.002

(XLIII) Wang, D. 2017. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crops Research, 213, 213-220. https://doi.org/10.1016/j.fcr.2017.08.012

(XLIV) Wang, T., Sun, S., Yin, Y., Zhao, J., Tang, Y., Wang, Y., Gao, F., Luan, X. 2024. Status of crop water use efficiency evaluation methods: A review. Agricultural and Forest Meteorology, 349, 109961. https://doi.org/10.1016/j.agrformet.2024.109961

(XLV) Wato, T. 2021. Growth and Yield Performance of Wheat (Triticum aestivum L.) to under Water Stress Conditions. Agricultural Science Digest - A Research Journal, 41(2), 301-306. https://doi.org/10.18805/ag.D-289

(XLVI) Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., Jin, J. 2018. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health, 15(5), 839. https://doi.org/10.3390/ijerph15050839

(XLVII) Zhang, X., Zhang, X., Liu, X., Shao, L., Sun, H., Chen, S. 2015. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agricultural Water Management, 153, 32-41. https://doi.org/10.1016/j.agwat.2015.02.001

(XLVIII) Zulkiffal, M., Ahsan, A., Ahmed, J., Musa, M., Kanwal, A., Saleem, M., Anwar, J., ur Rehman, A., Ajmal, S., Gulnaz, S., Javaid, M.M. 2021. Heat and Drought Stresses in Wheat (Triticum aestivum L.): Substantial Yield Losses, Practical Achievements, Improvement Approaches, and Adaptive Mechanisms, in: Hossain, A. (Ed.), Plant Stress Physiology. IntechOpen. https://doi.org/10.5772/intechopen.92378

Downloads

Published

2025-10-07

How to Cite

Aldaves dos Santos Guedes, P. O., Araújo da Silva, T. J., Caneppele, C., & Bonfim da Silva, E. M. (2025). AGRONOMIC PERFORMANCE OF WHEAT CULTIVARS UNDER WATER DEFICIT IN THE CERRADO: ADAPTATION AND SUSTAINABILITY. REVISTA DE AGRICULTURA NEOTROPICAL, 12(4). https://doi.org/10.32404/rean.v12i4.9471