POTENTIAL OF F3:4 SEGREGATING WHEAT POPULATIONS FOR TOLERANCE TO HEAT STRESS

Guilherme Ribeiro, Adérico Júnior Badaró Pimentel, João Romero do Amaral Santos de Carvalho Rocha, Isadora Cristina Martins Oliveira, Moacil Alves de Souza

Resumo


Heat is one of the major abiotic stresses that affect wheat yield and quality in many parts of the world. To overcome this problem, the development of heat tolerant cultivars has been shown to be one of the main targets of breeding programs, especially for the conditions of Central Brazil. The present study was developed with objective of identifying promising populations for tolerance to heat stress, in order to obtain lines adapted to the conditions of Central Brazil. The experiment was carried out in the summer of 2011 in Coimbra/MG where 36 segregating populations with different numbers of families per population were evaluated in an augmented block design, determining the cycle, plant height and grain yield. Genetic variability for heat tolerance was observed among the wheat populations. The vegetative development stage of wheat was more sensitive to the effect of heat stress. The most promising segregating populations were IAC364/BRS207, IAC24/Aliança IAC24/Pioneiro that associated high yield with a large number of families selected among the most productive, demonstrating the possibility of selecting heat stress-tolerant lines.


Texto completo:

PDF (English)

Referências


(I) Akter, N., Islam, M.R., 2017. Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37, 1-17.

(II) Ali, M.B., Ibrahima, A.M.H., Haysa, D.B., Risticc, Z., Fu, J., 2010. Wild tetraploid wheat (Triticum turgidum L.) response to heat stress. Journal of Crop Improvement, 24, 228-243.

(III) Al-Karaki, G.N., 2012. Phenological development-yield relationships in durum wheat cultivars under late-season high-temperature stress in a semiarid environment. ISRN Agronomy, 2012, 1-7.

(IV) Ayeneh, A., Van Ginkel, M., Reynolds, M.P., Ammar, K., 2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research, 79, 173-184.

(V) Cargnin, A., Souza, M.A., Fronza, V., Fogaça, C.M., 2009. Genetic and environmental contributions to increased wheat yield in Minas Gerais, Brazil. Scientia Agricola, 66, 317-322.

(VI) Cargnin, A., Souza, M.A., Rocha, V.S., Machado, J.C., Piccini, E., 2006. Tolerância ao estresse térmico em genótipos de trigo. Pesquisa Agropecuária Brasileira, 41, 1269-1276.

(VII) Coelho, M.A.O., Condé, A.B.T., Yamanaka, C.H., Corte, H.R., 2010. Avaliação da produtividade de trigo (Triticum aestivum L.) de sequeiro em Minas Gerais. Bioscience Journal, 26, 717-723.

(VIII) Conab - Companhia Nacional do Abastecimento, 2019. Acompanhamento da safra brasileira de grãos – safra 2018/2019 – quarto levantamento. https://www.conab.gov.br/info-agro/safras (Accessed January 14, 2019).

(IX) Cruz, C.D., 2013. GENES – a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35, 271-276.

(X) Cruz, C.D., Carneiro, P.C.S., 2006. Modelos biométricos aplicados ao melhoramento genético II, second ed. UFV, Viçosa.

(XI) Dhanda, S.S., Munjal, R., 2006. Inheritance of cellular thermotolerance in bread wheat. Plant Breeding, 125, 557-564.

(XII) Dias, A.S., Barreiro, M.G., Campos, P.S., Ramalho, J.C., Lidon, F.C., 2010. Wheat cellular membrane thermotolerance under heat stress. Journal of Agronomy and Crop Science, 196, 100-108.

(XIII) Farooq, M., Bramley. H., Palta. J.A., Siddique, K.H.M., 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491-507.

(XIV) Federer, W.T., 1956. Augmented (hoonuiaku) designs. Hawaian Planters’ Record, Aica, 55, 191-208.

(XV) Kaushal, N., Bhandari, K., Siddique, K.H.M., Nayyar, H., 2016. Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2, 1-42.

(XVI) Kumari, M., Pudake, R.N., Singh, V.P., Joshi, A.K., 2013. Association of staygreen trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica, 190, 87-97.

(XVII) Machado, J.C., Souza, M.A., Oliveira, D.M., Cargnin, A., Pimentel, A.J.B., Assis, J.C., 2010. Recurrent selection as breeding strategy for heat tolerance in wheat. Crop Breeding and Applied Biotechnology, 10, 9-15.

(XVIII) Oliveira, D.M., Souza, M.A., Rocha, V.S., Assis, J.C., 2011. Desempenho de genitores e populações segregantes de trigo sob estresse de calor. Bragantia, 70, 25-32.

(XIX) Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Ortiz-Monasterio, J.I., Reynolds, M., 2008. Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, 46-58.

(XX) Pasinato, A., Cunha, G.R., Fontana, D.C., Monteiro, J.E.B.A., Nakai, A.M., Oliveira, A.F., 2018. Potential area and limitations for the expansion of rainfed wheat in the Cerrado biome of Central Brazil. Pesquisa Agropecuária Brasileira, 53, 779-790.

(XXI) Prela, A., Ribeiro, A.M.A., 2002. Determinação de graus-dia acumulados e sua aplicação no planejamento do cultivo de feijão-vagem (Phaseolus vulgaris L.) para Londrina-PR. Revista Brasileira de Agrometeorologia, 10, 83-86.

(XXII) RCBPTT - Reunião da Comissão Brasileira de Pesquisa de Trigo e Triticale, 2014. Informações técnicas para trigo e triticale – Safra 2015. Embrapa, Brasília, DF.

(XXIII) Reynolds, M.P., Nagarajan, S., Razzaque, M.A., Ageeb, O.A.A., 2001. Heat tolerance, in: Reynolds, M.P., Ortiz-Monasterio, J.I., Mcnab, A., (Ed.), Application of Physiology in Wheat Breeding. México, CIMMYT, p. 124-135.

(XXIV) Reynolds, M.P., Pierre, C.S., Saad, A.S.I., Vargas, M., Condon, A.G., 2007. Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Science, 47, 172-189.

(XXV) Rodrigues, O., Haas, J.C., Costenaro, E.R., 2011. Manejo de trigo para alta produtividade II: caracterização ontogenética. Revista Plantio Direto, 20, 10-13.

(XXVI) Silveira, G., Moliterno, E., Ribeiro, G., Carvalho, F.I.F., Oliveira, A.C., Nornberg, R., Baretta, D., Mezzalira, I., 2010. Variabilidade genética para características agronômicas superiores em cruzamentos biparentais de aveia preta. Bragantia, 69, 823-832.

(XXVII) Souza, M.A., Pimentel, A.J.B., Ribeiro, G., 2011. Melhoramento para tolerância ao calor, in: Fritsche-Neto, R., Borém, A., (Ed.), Melhoramento de plantas para condições de estresses abióticos. Suprema, Visconde do Rio Branco, p.199-226.

(XXVIII) Viswanathan, C., Khanna-Chopra, R., 2001. Effect of heat stress on grain growth, starch synthes and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science, 186, 1-7.

(XXIX) Walter, L.C., Streck, N.A., Rosa, H.T., Alberto, C.M., Oliveira, F.B., 2009. Desenvolvimento vegetativo e reprodutivo de cultivares de trigo e sua associação com a emissão de folhas. Ciência Rural, 39, 2320-2326.

(XXX) Yildirim, M., Bahar, B., 2010. Responses of some wheat genotypes and their F2 progenies to salinity and heat stress. Scientific Research and Essays, 5, 1734-1741.




DOI: https://doi.org/10.32404/rean.v6i2.3314

Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 JOURNAL OF NEOTROPICAL AGRICULTURE

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Compartilhar igual 4.0 Internacional.