Visualizações: 158


  • Marlon Gomes Dias Federal University of Viçosa
  • Toshik Iarley da Silva Federal University of Viçosa
  • Renata Ranielly Pedroza Cruz Federal University of Viçosa
  • Lucas Brêtas Barbosa Federal University of Viçosa
  • José Cola Zanuncio Federal University of Viçosa
  • José Antonio Saraiva Grossi Federal University of Viçosa




Chlorophyll, Gas Exchange, Ornamental Plants, Zantedeschia aethiopica


The calla lily ornamental plant (Zantedeschia aethiopica) is grown and marketed in many countries. Studies on daily variation in photosynthesis are critical for understanding how a plant behaves in its growing environment. The objective of this study was to evaluate the daily photosynthetic course of calla lily plants grown in pots in a greenhouse under 50% shade. Gas exchange (gs, A, E, Ci, WUE, iWUE, and iCE) and chlorophyll indices (a, b, and total) were evaluated from 7:00 a.m. to 5:00 p.m. over three days. The values of all variables were greater at high temperatures (11:00 a.m. to 1:00 p.m.), except for gs, Ci, and chlorophyll b, which were higher at low temperatures (7:00 to 9:00 a.m.) Therefore, it is suggested that calla lily producers maintain the water status between 11:00 a.m. and 1:00 p.m. to optimize photosynthetic processes, and consequently, the growth and development of this plant. Correspondingly, irrigation of this crop should be performed prior to the interval mentioned above.

Author Biographies

Marlon Gomes Dias, Federal University of Viçosa

Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais, Brazil

Toshik Iarley da Silva, Federal University of Viçosa

Universidade Federal de Viçosa, Campus Universitário Viçosa, Minas Gerais, Brasil

Renata Ranielly Pedroza Cruz, Federal University of Viçosa

Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais, Brazil

Lucas Brêtas Barbosa, Federal University of Viçosa

Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais, Brazil

José Cola Zanuncio, Federal University of Viçosa

Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais, Brazil

José Antonio Saraiva Grossi, Federal University of Viçosa

Federal University of Viçosa, Campus Viçosa, Viçosa, Minas Gerais, Brazil


(I) Bertolino, L.T., Caine, R.S., Gray, J.E., 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225. DOI: https://doi.org/10.3389/fpls.2019.00225

(II) Bueno, A., Alfarhan, A., Arand, K., Burghardt, M., Deininger, A.C., Hedrich, R., Leide, J., Seufert, P., Staiger, S., Riederer, M., 2019. Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. Journal of Experimental Botany, 70, 1613-1625. DOI: https://doi.org/ 10.1093/jxb/erz018

(III) Costa, G.F., Marenco, R.A., 2007. Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis). Acta Amazônica, 37, 229-234.

(IV) Deans, RM, Farquhar, GD, and Busch, FA (2019). Estimating stomatal and biochemical limitations during photosynthetic induction. Plant, Cell & Environment, 42, 3227-3240. DOI: https://doi.org/10.1111/pce.13622

(V) Dias, C.S., Araujo, L., Chaves, J.A.A., Da Matta, F.M., Rodrigues, F.A., 2018. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum. Plant Physiology and Biochemistry, 127, 119-128. DOI: https://doi.org/10.1016/j.plaphy.2018.03.016

(VI) Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M.A., Mitchell, A., Howells, R., Wallington, E., Fleming, A.J., Gray, J.E., 2019. Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 70, 4737-4748. DOI: https://doi.org/10.1093/jxb/erz248

(VII) Farooq, M., Hussain, M., Ul-Allah, S., Siddique, K.H., 2019. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management, 219, 95-108. DOI: https://doi.org/10.1016/j.agwat.2019.04.010

(VIII) Figueiredo, F.R.A., Gonçalves, A.C.M., Ribeiro, J.E.S., Silva, T.I., Nóbrega, J.S., Dias, T.J., Albuquerque, M.B., 2019. Gas exchanges in sugar apple (Annona squamosa L.) subjected to salinity stress and nitrogen fertilization. Australian Journal of Crop Science, 13, 1959-1966. DOI: https://doi.org/10.21475/ajcs.19.13.12.p1754

(IX) Friendly, M., Fox, J., 2017. candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0.

(X) Genesio, L., Bassi, R., Miglietta, F. 2021. Plants with less chlorophyll: A global change perspective. Global Change Biology, 27, 959-967. DOI: https://doi.org/10. 1111/gcb.15470

(XI) Haworth, M., Marino, G., Brunetti, C., Killi, D., De Carlo, A., Centritto, M., 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.)-A case study of the 2017 heat wave. Plants, 7, 76. DOI: https://doi.org/10.3390/plants7040076

(XII) Hlophe, N.P., Moyo, M., Van Staden, J., Finnie, J.F., 2015. Micropropagation of Zantedeschia aethiopica (L.) Spreng.: towards its commercial use in the cut flower industry. Propagation of Ornamental Plants, 15, 73-78.

(XIII) Kippes, N., Guedira, M., Lin, L., Alvarez, M.A., Brown-Guedira, G.L., Dubcovsky, J., 2018. Single nucleotide polymorphisms in a regulatory site of VRN-A1 first intron are associated with differences in vernalization requirement in winter wheat. Molecular Genetics and Genomics, 293, 1231-1243. DOI: https://doi.org/10. 1007/s00438-018-1455-0

(XIV) Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., Long, S.P., 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354, 857-861. DOI: https://doi.org/10.1126/science.aai8878

(XV) Mamrutha, H.M., Sharma, D., Kumar, K.S., Venkatesh, K., Tiwari, V., Sharma, I., 2017. Influence of diurnal irradiance variation on chlorophyll values in wheat: A comparative study using different chlorophyll meters. National Academy of Science Letters, 40, 221-224. DOI: https://doi.org/10.1007/s40009-017-0544-7

(XVI) Morales, A., Kaiser, E., Yin, X., Harbinson, J., Molenaar, J., Driever., S.M., Struik, P.C., 2018. Dynamic modelling of limitations on improving leaf CO2 assimilation under fluctuating irradiance. Plant, Cell & Environment, 41,589-604. DOI: https://doi.org/10.1111/pce.13119

(XVII) Murakami, K., Ibaraki, Y., 2019. Time course of the photochemical reflectance index during photosynthetic induction: its relationship with the photochemical yield of photosystem II. Physiologia Plantarum, 165, 524-536. DOI: https://doi.org/10.1111/ppl.12745

(XVIII) Nievola, C.C., Carvalho, C.P., Carvalho, V., Rodrigues, E., 2017. Rapid responses of plants to temperature changes. Temperature, 4, 371-405. DOI: https://doi.org/10.1080/23328940.2017.1377812

(XIX) Ogle, K., Lucas, R.W., Bentley, L.P., Cable, J.M., Barron‐Gafford, G.A., Griffith, A., Ignace, D., Jenerette, D.G., Tyler, A., Huxman, T.E., Loik, M.E., Smith, S.D., Tissue, D.T., 2012. Differential daytime and night‐time stomatal behavior in plants from North American deserts. New Phytologist, 194, 464-476. DOI: https://doi.org/10.1111/j.1469-8137.2012.04068.x

(XX) Osei-‐Bonsu, I., McClain, A.M., Walker, B.J., Sharkey, T.D., Kramer, D.M., 2021. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. Plant, Cell & Environment, 44, 2290-2307. DOI: https://doi.org/10.1111/pce.14026

(XXI) Padilla, F.M., Souza, R., Peña-Fleitas, M.T., Grasso, R., Gallardo, M., Thompson, R.B., 2019. Influence of time of day on measurement with chlorophyll meters and canopy reflectance sensors of different crop N status. Precision Agriculture, 20, 1087-1106. DOI: https://doi.org/10.1007/s11119-019-09641-1

(XXII) Pinheiro, C., Chaves, M.M., 2011. Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. DOI: DOI: https://doi.org/10.3390/plants7040076

(XXIII) Schreel, J., Steppe, K., 2020. Foliar water uptake in trees: negligible or necessary? Trends in Plant Science, 25, 590-603. DOI: https://doi.org/10.1016/j.tplants.2020.01.003

(XXIV) Slattery, R.A., Walker, B.J., Weber, A.P.M., Ort, D.R., 2018. The impacts of fluctuating light on crop performance. Plant Physiology, 176, 990-1003. DOI: https://doi.org/10. 1104/pp.17.01234

(XXV) Urban, J., Ingwers, M., McGuire, M.A., Teskey, R.O., 2017. Stomatal conductance increases with rising temperature. Plant Signaling & Behavior, 12, e1356534. DOI: https://doi.org/10.1080/15592324.2017.1356534

(XXVI) Wang, H., Prentice, I.C., Keenan, T.F., Davis, T.W., Wright, I.J., Cornwell, W.K., Evans, B.J., Peng, C., 2017. Towards a universal model for carbon dioxide uptake by plants. Nature Plants, 3, 734-741. DOI: https://doi.org/10.1038/s41477-017-0006-8




How to Cite

Dias, M. G., da Silva, T. I., Cruz, R. R. P., Barbosa, L. B., Zanuncio, J. C. ., & Grossi, J. A. S. (2022). DAILY PHOTOSYNTHETIC COURSE OF CALLA LILY PLANTS. REVISTA DE AGRICULTURA NEOTROPICAL, 9(2), e6962. https://doi.org/10.32404/rean.v9i2.6962

Most read articles by the same author(s)