MONO AND COMPETITIVE ADSORPTION OF Zn, Cu AND Mn IN DIFFERENT CALCAREOUS SOILS

Visualizações: 323

Authors

DOI:

https://doi.org/10.32404/rean.v11i3.8543

Keywords:

Qmax, Σkd, Adsorption capacity, Adsorption tendency, Co-existence

Abstract

Soil carbonate is considered an effective adsorbent to trace element retention. Many researchers have studied the preferential adsorption of those heavy metals on calcareous soils. In 2021- 2022, an experiment was conducted in agriculture college laboratories to assess the mono and competitive of three trace elements (Cu, Zn, Mn) on three calcareous soils that differ in their CaCO3 content. Calcareous representative soil samples were collected from different Nineveh governorate and north Iraq locations. The adsorption experiment was carried out using the batch method by equilibrating 2.5 gm soil with 25 ml of a solution containing concentrations of (1.5, 10, 20, 30, 40, 50, 60 and 70 mg. L-1) of all traced elements in the same concentrations. Sorption isotherms were characterized using linear Langmuir and Freundlich equations. Results showed huge differences in sorptions capacities and other studied parameters. All studied soils showed a high maximum adsorption capacity Qmax and strength binding for Cu than Zn and Mn. On the basis of Qmax and distribution coefficient values (Σkd) for each studied soil and element, the selectivity sequence was as follows Cu>Zn >Mn. Gibbs free energy (-ΔG) values were decreased as the sorption capacity decreased too. In mono and ternary adsorption system, Langmuir isotherms were of H-type whereas Freundlich isotherms were of C-type. The soil properties such as CaCO3, pH, Clay, C.E.C, and O.M were significantly related to trace elements adsorption.

Author Biographies

Hudhaifa AL-Hamandi, Tikrit University

Tikrit University, Tikrit, Iraq.

 

 

 

 

Mijbil Mohammad Aljumaily, Tikrit University

Tikrit University, Tikrit, Iraq.

Mohammed Ali Al-Obaidi, Mossul University

Mossul University, Nínive, Iraq.

References

(I) Adhikari, T., Singh, M.V. 2003. Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114(1-2), 81-92.‏ DOI: https://doi.org/10.1016/S0016-7061(02)00352-X.

(II) Al-Degs, Y.S., El-Barghouthi, M. I., Issa, A.A., Khraisheh, M.A., Walker, G.M., 2006. Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies. Water research, 40(14), 2645-2658.‏ DOI: https://doi.org/10.1016/j.watres.2006.05.018.

(III) Alghamdi, A.G., Alasmary, Z. 2022. Fate and Transport of Lead and Copper in Calcareous Soil. Sustainability, 15(1), 775.‏ DOI: https://doi.org/10.3390/su15010775.

(IV) Al-Janabi, Y.H.I., Saleh, A.D., Sirhan, M.M. 2023, December. The Effect of Various Plant Covers on the Adsorption and Desorption of Copper Ions in Calcareous Soil. In IOP Conference Series: Earth and Environmental Science, 1262(8), 082056.‏ DOI: https://doi.org/10.1088/1755-1315/1262/8/082056.

(V) Aljumaily, M.M., Al-Hamandi, H.M., Al-Obaidi, M., AL-Zidan, R.R., 2022. The effect of calcium carbonate content on the zinc quantity-intensity relationship in some soils of Mosul, Irak. Ciencia y Tecnología Agropecuaria, 23(1).‏ DOI: https://doi.org/10.21930/rcta.vol23_num1_art:2373.

(VI) Aljumaily, M.M., Al-Hamandi, H.M., Farhan, M.J., Kareem, H.A., 2022. Relationship between Zn and Cd in soil and plant. Agraarteadus, 33(1):33–42. DOI: https://dx.doi.org/10.15159/jas.22.19.

(VII) Al-Qattan, R.A., Al-Khafagi, Q. 2023. Effect of Irrigation Water Quality and Wetting and Drying Cycles on the Release of Calcium and Magnesium in Two Soils of Different Textures. Tikrit Journal for Agricultural Sciences, 23(3), 147-157.‏ DOI: https://doi.org/10.25130/tjas.23.3.16.

(VIII) Anirudhan, T.S., Radhakrishnan, P.G. 2008. Thermodynamics and kinetics of adsorption of Cu (II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell. The Journal of Chemical Thermodynamics, 40(4), 702-709.‏ DOI: https://doi.org/10.1016/j.jct.2007.10.005.

(IX) Baghenejad, M., Javaheri, F., Moosavi, A.A. 2016. Adsorption isotherms of some heavy metals under conditions of their competitive adsorption onto highly calcareous soils of southern Iran. Archives of Agronomy and Soil Science, 62(10), 1462-1473.‏ DOI: https://doi.org/10.1080/03650340.2016.1147647.

(X) Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.‏ DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x.

(XI) Brümmer, G.W., Gerth, J., Herms, U. 1986. Heavy metal species, mobility and availability in soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 149(4), 382-398.‏ DOI: https://doi.org/10.1002/jpln.19861490404.

(XII) Chen, Z., Ma, W., Han, M., 2008. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. Journal of hazardous materials, 155(1-2), 327-333.‏ DOI: https://doi.org/10.1016/j.jhazmat.2007.11.064.

(XIII) Compton, R.G., Pritchard, K.L. 1990. The dissolution of calcite at pH> 7: kinetics and mechanism. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 330(1609), 47-70.‏ DOI: https://doi.org/10.1098/rsta.1990.0002.

(XIV) Dandanmozd, F., Hosseinpur, A.R. 2010. Thermodynamic parameters of zinc sorption in some calcareous soils. Journal of American science, 6(7), 298-304.‏ DOI: https://doi.org/10.7537/marsjas.060710.35.

(XV) Elzinga, E.J., Reeder, R.J., 2002. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimica et Cosmochimica Acta, 66(22), 3943-3954.‏ DOI: https://doi.org/10.1016/S0016-7037(02)00971-7.

(XVI) Fadhal, F.A., Ismaeal, A.S. 2023, November. The Nature of the Effect of the Physiographic Location on the Spectral Behavior of Soil Horizons and the Distribution of Vegetation in Central and Northern Iraq. In: IOP Conference Series: Earth and Environmental Science, 1259(1), 012021) DOI: https://doi.org/10.1088/1755-1315/1259/1/012021.

(XVII) Fadhal, F.A., Ismaeal, A.S. 2023, November. The Nature of the Pedogenic and Geoinformatics Distribution of Iron Oxides in Different Physiographic Units. In IOP Conference Series: Earth and Environmental Science, 1259(1), 012025. DOI: https://doi.org/10.1088/1755-1315/1259/1/012025.

(XVIII) Flogeac, K., Guillon, E., Aplincourt, M. 2007. Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma, 139(1-2), 180-189.‏ DOI: https://doi.org/10.1016/j.geoderma.2007.01.016.

(XIX) Frimmel, F.H., Huber, L. 1996. Influence of humic substances on the aquatic adsorption of heavy metals on defined mineral phases. Environment International, 22(5), 507-517.‏ DOI: https://doi.org/10.1016/0160-4120(96)00040-2.

(XX) Giles, C.H., Smith, D., Huitson, A. 1974. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of colloid and interface science, 47(3), 755-765. DOI: https://doi.org/10.1016/0021-9797(74)90252-5.

(XXI) Gomes, P. C., Fontes, M. P., da Silva, A. G., de S. Mendonça, E., Netto, A. R. 2001. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Science Society of America Journal, 65(4), 1115-1121.‏ DOI: https://doi.org/10.2136/sssaj2001.6541115x.

(XXII) Iyengar, B.R.V., Raja, M.E. 1983. Zinc adsorption as related to its availability in some soils of Karnataka. Journal of the Indian Society of Soil Science, 31(3), 432-438.

(XXIII) Jalali, M., Moharrami, S. 2007. Competitive adsorption of trace elements in calcareous soils of western Iran. Geoderma, 140(1-2), 156-163.‏ DOI: https://doi.org/10.1016/j.geoderma.2007.03.016.

(XXIV) ‏Jalali, M., Moradi, F. 2013. Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environmental Monitoring and Assessment, 185, 8831-8846.‏ DOI: https://doi.org/10.1007/s10661-013-3216-1.

(XXV) Johnson, R.A., Bhattacharyya, G.K. 2019. Statistics: principles and methods. 8th ed. Pub. New York, John Wiley and Sons.

(XXVI) Karimian, N., Ahangar, A.G. 1998. Manganese retention by selected calcareous soils as related to soil properties. Communications in soil science and plant analysis, 29(9-10), 1061-1070.‏ DOI: https://doi.org/10.1080/00103629809370008.

(XXVII) Li, T., Jiang, H., Yang, X., He, Z. 2013. Competitive sorption and desorption of cadmium and lead in paddy soils of eastern China. Environmental earth sciences, 68, 1599-1607.‏ DOI: https://doi.org/10.1007/s12665-012-1853-2.

(XXVIII) Maftoun, M., Karimian, N., Moshiri, F. 2002. Sorption characteristics of copper (II) in selected calcareous soils of Iran in relation to soil properties. Communications in Soil Science and Plant Analysis, 33(13-14), 2279-2289.‏ DOI: https://doi.org/10.1081/CSS-120005762.

(XXIX) McBride, M.B. 1979. Chemisorption and precipitation of Mn2+ at CaCO3 surfaces. Soil Science Society of America Journal, 43(4), 693-698.‏ DOI: https://doi.org/10.2136/sssaj1979.03615995004300040013x.

(XXX) McKenzie, R.M. 1980. The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Research, 18(1), 61-73.‏ DOI: https://doi.org/10.1071/SR9800061.

(XXXI) Mesquita, M.E., Silva, J.V. 1996. Zinc adsorption by a calcareous soil. Copper interaction. Geoderma, 69(1-2), 137-146.‏ DOI: https://doi.org/10.1016/0016-7061(95)00058-5.

(XXXII) Mesquita, M.E., Silva, J.V.E., Branco, M.C., Sequeira, E.M. 2000. Copper and zinc competitive adsorption: desorption in calcareous soils. Arid Soil Research and Rehabilitation, 14(1), 27-41.‏ DOI: https://doi.org/10.1080/089030600263157.

(XXXIII) Morera, M.T., Echeverrıa, J.C., Mazkiaran, C., Garrido, J.J. 2001. Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environmental Pollution, 113(2), 135-144.‏ DOI: https://doi.org/10.1016/S0269-7491(00)00169-X.

(XXXIV) Noori, N.W., Ismaeal, A.S. 2023, December. Preparation of Land Cover and Land Use Maps for the Period 1976-2022 in Northern Kirkuk. In: IOP Conference Series: Earth and Environmental Science, 1262(8), 082065. DOI: https://doi.org/10.1088/1755-1315/1262/8/082065.

(XXXV) Noori, N.W., Ismaeal, A.S. 2023, December. Preparing Maps of the Distribution of Organic Matter and Calcium Carbonate in Northern Iraq. In: IOP Conference Series: Earth and Environmental Science, 1262(8), 082069. DOI: https://doi.org/10.1088/1755-1315/1262/8/082069.

(XXXVI) Obaid, B.S., Salih, R.S., Ajrash, Y.H. 2023. Effect of organic matter on the adsorption and release of copper in some gypsiferous soils in Salah al-Din Governorate. Tikrit Journal for Agricultural Sciences, 23(3), 51-63. DOI: https://doi.org/10.25130/tjas.23.3.6.

(XXXVII) Osman, A.Z., Wassif, M.M., El‐Kadi, M.A., Salam, M.A. 1980. Effect of carbonate in clay fraction on fixation of zinc. Zeitschrift für Pflanzenernährung und Bodenkunde, 143(5), 524-529.‏ DOI: https://doi.org/10.1002/jpln.19801430506.

(XXXVIII) Page, A.L., Miller, R.H., Keeney, D.R. 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc., and Soil Science Society of America. Inc. Publisher, Madison, Wisconsin USA.

(XXXIX) Qadir, K., Al-Obaidi, M.A. 2024. Using the kinetic approach for the adsorption of base ions (Ca, Mg, Na, K) by the calm flow method in some soils in the northern of Iraq. Tikrit Journal for Agricultural Sciences, 24(1), 180-192.‏ DOI: https://doi.org/10.25130/tjas.24.1.15.

(XL) Rahman, M.A., Lamb, D., Kunhikrishnan, A., Rahman, M.M. 2021. Kinetics, Isotherms and Adsorption–Desorption Behavior of Phosphorus from Aqueous Solution Using Zirconium–Iron and Iron Modified Biosolid Biochars. Water, 13(23), 3320.‏ DOI: https://doi.org/10.3390/w13233320.

(XLI) Serrano, S., Garrido, F., Campbell, C.G., Garcıa-González, M.T. 2005. Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma, 124(1-2), 91-104.‏ DOI: https://doi.org/10.1016/j.geoderma.2004.04.002.

(XLII) Shaheen, S.M., Antoniadis, V., Kwon, E.E., Biswas, J.K., Wang, H., Ok, Y.S., Rinklebe, J. 2017. Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils. Environmental geochemistry and health, 39, 1365-1379.‏ DOI: https://doi.org/10.1007/s10653-017-9927-4.

(XLIII) Shaheen, S.M., Tsadilas, C.D., Rinklebe, J. 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in colloid and interface science, 201, 43-56.‏ DOI: https://doi.org/10.1016/j.cis.2013.10.005.

(XLIV) Sipos, P. 2021. Searching for optimum adsorption curve for metal sorption on soils: comparison of various isotherm models fitted by different error functions. SN Applied Sciences, 3, 1-13.‏ DOI: https://doi.org/10.1007/s42452-021-04383-0.

(XLV) Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil survey.2nd ed. Agricultural Handbook 436. Natural Resource Conservation Service USDA, Washington, US Government Printing Office.

(XLVI) Spark, K.M., Wells, J.D., Johnson, B.B. 1995. Characterizing trace metal adsorption on kaolinite. European Journal of Soil Science, 46(4), 633-640.‏ DOI: https://doi.org/10.1111/j.1365-2389.1995.tb01359.x.

(XLVII) Sprynskyy, M., Kowalkowski, T., Tutu, H., Cozmuta, L.M., Cukrowska, E.M., Buszewski, B. 2011. The adsorption properties of agricultural and forest soils towards heavy metal ions (Ni, Cu, Zn, and Cd). Soil and Sediment Contamination, 20(1), 12-29.‏ DOI: https://doi.org/10.1080/15320383.2011.

(XLVIII) Srivastava, P., Singh, B., Angove, M. 2005. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science, 290(1), 28-38.‏ DOI: https://doi.org/10.1016/j.jcis.2005.04.036.

(XLIX) Van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K., Blaakmeer, J. 1986. Electrolyte adsorption on heterogeneous surfaces: adsorption models. Journal of Colloid and Interface Science, 109(1), 219-228.‏ DOI: https://doi.org/10.1016/0021-9797(86)90296-1.

(L) Vega, F.A., Covelo, E.F., Andrade, M.L. 2006. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science, 298(2), 582-592.‏ DOI: https://doi.org/10.1016/j.jcis.2006.01.012.

(LI) Yang, H., Huang, K., Zhang, K., Weng, Q., Zhang, H., Wang, F. 2021. Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities. Environmental Science and Technology, 55(20), 14316-14328.‏ DOI: https://doi.org/10.1021/acs.est.1c02479.

(LII) Yatim, N.I., Ariffin, M.M., Hamzah, S. 2018. Removal of heavy metals using self-integrating bio-adsorbent from agricultural by-products and marine waste materials. Desalination and Water Treatment, 118(1), 216-229.‏ DOI: https://doi.org/10.5004/dwt.2018.22622

(LIII) Zhang, M.K., Zheng, S.A. 2007. Competitive adsorption of Cd, Cu, Hg and Pb by agricultural soils of the Changjiang and Zhujiang deltas in China. Journal of Zhejiang University-SCIENCE A, 8(11), 1808-1815.‏ DOI: https://doi.org/10.1631/jzus.2007.A1808.

Downloads

Published

2024-08-28

How to Cite

AL-Hamandi, H., Aljumaily, M. M., & Al-Obaidi, M. A. (2024). MONO AND COMPETITIVE ADSORPTION OF Zn, Cu AND Mn IN DIFFERENT CALCAREOUS SOILS. REVISTA DE AGRICULTURA NEOTROPICAL, 11(3), e8543. https://doi.org/10.32404/rean.v11i3.8543