SHADING AFTER APPLICATION AFFECTS THE EFFICACY OF POST-EMERGENCE HERBICIDES
DOI:
https://doi.org/10.32404/rean.v12i4.9066Keywords:
Ipomoea triloba, Light, Physiology, Application, EnvironmentAbstract
Light and shading after application play an important role on herbicide efficacy, however its effect on different mechanisms of action is not well understood. Therefore, this work was developed with the objective of evaluating the effect of shading on the efficacy of post-emergence application of herbicides with different mechanisms of action. Five independent greenhouse experiments were carried out in Machado - MG, using the herbicides atrazine (500 and 1,000 g ha-1), dicamba (240 and 480 g ha-1), diquat (200 and 400 g ha-1), saflufenacil (24.5 and 49.0 g ha-1), and tembotrione (50.4 and 100.8 g ha-1). Ipomoea triloba plants were used as bioindicator at the phenological stage of 5-6 leaves. The effect of shading was evaluated after applications, once plants were subjected to a period of 48 hours of altered light incidence in all treatments with this factor. A (2×3)+1 factorial arrangement was used for each experiment, consisted of two herbicide rates, three shading levels (100% shade screen, 50% shade screen, and no shade screen), and checkplots without application of herbicides. The shading environment consisted of small chambers fully covered with the respective shade screens (50% and 100%). During the trials, herbicide efficacy was evaluated weekly, as well as dry matter at the end of the period. The efficacy of the herbicides was not hindered by shading after applications. The shading had no significant effect on the efficacy of the herbicide dicamba. The efficacy of atrazine was slightly higher when the plants were kept in the shading chamber after application. Shading after application contributed positively for the efficacy of the herbicides diquat and tembotrione. The herbicides dicamba, diquat, and saflufenacil were effective for post-emergence control of I. triloba.
References
(I) Agostinetto, D., Vargas, L., Gazziero, D.L.P., Silva, A.A., 2015. Manejo de plantas daninhas. In: Sediyama, T., Silva, F., Borém, A., Soja: do plantio à colheita. Viçosa, UFV, p.234-255. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1022693/1/CNPTID43073.pdf (Acessed June 20, 2024).
(II) Almeida, D.P., Agostini, A.R., Yamauchi, A.K., Decaro Junior, S.T., Ferreira, M.C., 2016. Application volumes and sizes of droplets for the application of diquat herbicide in the control of Eichornia crassipes. Planta Daninha, 34(1), 171-179. https://doi.org/10.1590/S0100-83582016340100018
(III) Alptekin, H., Okzan, A., Gurbuz, R., Kulak, M., 2023. Management of weeds in maize by sequential or individual applications of pre- and post-emergence herbicides. Agriculture, 13(2), e421. https://doi.org/10.3390/agriculture13020421
(IV) Barker, A.L., Pawlak, J., Duke, S.O., Beffa, R., Tranel, P.J., Wuerffel, J., Young, B., Porri, A., Liebl, R., Aponte, R., 2023. Discovery, mode of action, resistance mechanisms, and plan of action for sustainable use of group 14 herbicides. Weed Science, 71(3), 173-188. https://doi.org/10.1017/wsc.2023.15
(V) Campos, C.F., Vitorino, H.S., Martins, D., 2012. Controle de plantas daninhas com diuron em diferentes condições de luz. Revista Brasileira de Herbicidas, 11(3), 258-268. https://doi.org/10.7824/rbh.v11i3.187
(VI) Carvalho, S.J.P., Nery, L.F., Madeira, C.A.B., Andrade, J.F., Presoto, J.C., 2020. Susceptibility of four Ipomoea genus weed species to the herbicides saflufenacil or flumioxazin. Revista Agrogeoambiental, 12(2), 106-115. https://doi.org/10.18406/2316-1817v12n220201445
(VII) Carvalho, S.J.P., Oliveira, V.G., Vilela, M.E.P., Mendes, A.C., 2021. Efficacy and interaction of dicamba-haloxyfop tank mixtures. Revista de Ciências Agroveterinárias, 20(1), 1-9. https://doi.org/10.5965/223811712012021001
(VIII) Carvalho, S.J.P., Palhano, M.G., Picoli Junior, G.J., López Ovejero, R.F., 2023. Susceptibility of non-tolerant soybean to low rates of dicamba. Weed Control Journal, 22, e202300824. https://doi.org/10.7824/wcj.2023;22:00824
(IX) Christoffoleti, P.J., Figueiredo, M.R.A., Peres, L.E.P., Nissen, S., Gaines, T., 2015 Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant sciences advances. Scientia Agricola, 72(4), 356-362. https://doi.org/10.1590/0103-9016-2014-0360
(X) Cieslik, L.F., Vidal, R.A., Trezzi, M.M., 2013. Fatores ambientais que afetam a eficácia de herbicidas inibidores da ACCase: revisão. Planta Daninha, 31(2), 483-489. https://doi.org/10.1590/S0100-83582013000200026
(XI) Ciuberkis, S., Bernotas, S., Raudonis, S., Felix, J., 2010. Effect of weed emergence time and intervals of weed and crop competition on potato yield. Weed Technology, 21(1), 213-218. https://doi.org/10.1614/WT-04-210.1
(XII) Dalazen, G., Kruze, N.D., Machado, S.L.O., Balbinot, A., 2015. Sinergismo na combinação de glifosato e saflufenacil para o controle de buva. Pesquisa Agropecuária Tropical, 45(2), 249-256. https://doi.org/10.1590/1983-40632015v4533708
(XIII) Durigan, J.C., 1992. Efeito de adjuvantes na calda e no estádio de desenvolvimento das plantas, no controle do capim-colonião (Panicum maximum) com glyphosate. Planta Daninha, 10(1/2), 39-44. https://doi.org/10.1590/S0100-83581992000100003
(XIV) Foloni, L.L., Velini, E.D., Carbonari, C.A., Rodrígues, J.D., Ono, E.O., Cruz, R.A., 2024. Glyphosate residues in coffee bean: impact of application methods and compliance with MRLs. Advances in Weed Science, 42, e020240060. https://doi.org/10.51694/AdvWeedSci/2024;42:00006
(XV) Grossmann, K., Hutzler, J., Caspar, G., Kwiatkowski, J., Brommer, C.L., 2011. Saflufenacil (Kixor™): Biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Science, 23(3), 290-298. https://doi.org/10.1614/WS-D-10-00179.1
(XVI) Kalina, J.R., Corkern, C.B., Shilling, D.G., Basinger, N.T., Grey, T.L., 2022. Influence of time of day on dicamba and glyphosate efficacy. Weed Technology, 36(1), 21-27. https://doi.org/10.1017/wet.2021.66
(XVII) Karam, D., Silva, J.A.A., Pereira Filho, I.A., Magalhães, P.C., 2009. Características do herbicida tembotrione na cultura do milho. Embrapa Milho e Sorgo, Sete Lagoas. Circular Técnica 129. 6p. https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPMS-2010/22386/1/Circ-129.pdf (Acessed December 22, 2018).
(XVIII) Krähmer, H., Walter, H., Jeschke, P., Haaf, K., Baur, P., Evans, R., 2021. What makes a molecule a pre- or a post-herbicide – how valuable are physicochemical parameters for their design. Pest Management Science, 77, 4863-4873. https://doi.org/10.1002/ps.6535
(XIX) Lima-Melo, Y., Alencar, V.T.C.B., Lobo, A.K.M., Sousa, R.H.V., Tikkanen, M., Aro, E.M., Silveira, J.A.G., Gollan, P.J., 2019. Photoinibition of photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Frontiers in Plant Science, 10, e916. https://doi.org/10.3389/fpls.2019.00916
(XX) Mançanares, L.B., Gonçalves Netto, A., Andrade, J.F., Presoto, J.C., Silva, L.J.F., Carvalho, S.J.P., 2018. Seletividade de tembotrione aplicado em diferentes estádios fenológicos da cultura do milho safrinha. Revista Agrogeoambiental, 10(4), 65-73. https://doi.org/10.18406/2316-1817v10n420181167
(XXI) Montgomery, G.B., Treadway, J.A., Reeves, J.L., Steckel, L.E., 2017. Effect of time of day of application of 2,4-D, dicamba, glufosinate, paraquat and saflufenacil on horseweed (Conyza canadensis) control. Weed Technology, 31(4), 550-556. https://doi.org/10.1017/wet.2017.34
(XXII) Oliveira, G.M.P., Oliveira, H.C., Silva, M.A.A., Dalazen, G., 2022. Control of volunteer corn as a function of light restriction periods after diquat application. Revista Caatinga, 35(2), 299-307. https://doi.org/10.1590/1983-21252022v35n206rc
(XXIII) Pitelli, R.A., Bisigatto, A.T., Kawaguchi, I., Pitelli, R.L.C.M., 2011. Doses e horários de aplicação do diquat no controle de Eichhornia crassipes. Planta Daninha, 29(2), 269-277. https://doi.org/10.1590/S0100-83582011000200004
(XXIV) Presoto, J.C., Andrade, J.F., Carvalho, S.J.P., 2020. Interação e eficácia de misturas em tanque dos herbicidas saflufenacil e glyphosate. Revista Brasileira de Herbicidas, 19(4), 1-7. https://doi.org/10.7824/rbh.v19i4.721
(XXV) Rodrigues, B.N., Almeida, F.S., 2018. Guia de herbicidas. 7. ed. Londrina, 764 p.
(XXVI) SBCPD. Sociedade Brasileira da Ciência das Plantas Daninhas, 1995. Procedimentos para instalação, avaliação e análise de experimentos com herbicidas. Londrina, SBCPD, 42p.
(XXVII) Scott, A.J., Knott, M.A., 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics, 30(3), 507-512. https://doi.org/10.2307/2529204
(XXVIII) Silva, A.A., Ferreira, F.A., Ferreira, L.R., Santos, J.B., 2007. Métodos de controle de plantas daninhas. In.: Silva, A.A., Silva, J.F. (Ed.) Tópicos em manejo de plantas daninhas. Viçosa, UFV, p.63-81.
(XXIX) Schneider, T., Michelon, F., Bortolotto, R.P., Camera, J.N., Machado, J.M., Koefender, J., 2022. Controle químico de buva em dessecação pré-semeadura da soja. Weed Control Journal, 21, e202200766. https://doi.org/10.7824/wcj.2022;21:00766
(XXX) Spricigo, H., Ramos, G.C., Schedenffeldt, B.F., Hirata, A.C., Monquero, P.A., 2021. Horário de aplicação influencia a eficácia de dicamba e associações no controle de Bidens pilosa. Acta Iguazu, 10(1), 47-58. http://dx.doi.org/10.48075/actaiguaz.v10i1.26077
(XXXI) Stewart, C.L., Nurse, R.E., Sikkema, P.H., 2009. Time of day impacts postemergence weed control in corn. Weed Technology, 23(3), 346–355. https://doi.org/10.1614/WT-08-150.1
(XXXII) Székás, A., 2021. Herbicide mode of action. In.: Mesnage, R., Zaller, J.G. (eds.). Herbicides: chemistry, efficacy, toxicology, and environmental impacts. Amsterdam, Elsevier, p.41-86.
(XXXIII) Tehulie, N.S., Misgan, T., Awoke, T., 2021. Review on weeds and weed controlling methos in soybean (Glycine max L.). Journal of Current Research in Food Science, 2(1), 1-6.
(XXXIV) Waltz, A.L., Martin, A.R., Roeth, F.W., Lindquist, J.L., 2004. Glyphosate efficacy on velvetleaf varies with application time of day. Weed Technology, 18(4), 931–939. https://doi.org/10.1614/WT-03-123R3
(XXXV) Wu, J., Zhai, Y., Monikh, F.A., Arenas-Lago, D., Grillo, R., Vijver, M.G., Peijenburg, W.J.G.M., 2021. The differences between the effects of a nanoformulation and a conventional form of atrazine to lettuce: physiological responses, defense mechanisms, and nutrient displacement. Journal of Agriculture and Food Chemistry, 62(42), 12527-12540. https://doi.org/10.1021/acs.jafc.1c01382
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.