CASSAVA ROOTS DAMAGED BY MIGDOLUS FRYANUS PRODUCE POOR QUALITY STARCH
Visualizações: 304DOI:
https://doi.org/10.32404/rean.v9i2.6884Keywords:
Soil pests, Tuberous roots, Pests, Processing industryAbstract
The aim of this study was to evaluate the quality of starch produced by plants that suffer damage caused by M. fryanus, analyzed by colorimetric and morphological indices. Colorimetric data were composed of luminosity indices, “a” and “b” chroma coordinates and darkening index. For morphological data, the perimeter and area of starch granules extracted from cassava roots were analyzed. The variables were summarized in a principal component analysis and the axes scores retained for interpretation were correlated with the damage caused by the M. fryanus. From these analyses and observing the main effects, linear regression models for the variables were determined, according to the level of damage caused by the pest. The damage caused by M. fryanus in the roots strongly influenced the indices related to starch colorimetry, hence, under conditions of greater damage, the tendency of the chroma coordinates to vary toward red and yellow was observed and a decrease in starch luminosity occurred, inversely proportional to the increase in darkening. Similar to what was observed in the colorimetric data, a drop in the size of starch granules was noted in the roots, which suffered greater damage from the pest.
References
(I) Abraham, T.E. 1993. Stabilization of Paste Viscosity of Cassava Starch by Heat Moisture Treatment. Starch/Stärke, 45(4), 131–135. DOI: https://doi.org/10.1002/star.19930450404
(II) Bellotti, A.C., Smith, L. Lapointe, S.L. 1999. Recent Advances in Cassava Pest Management, Annual Review of Entomology, 44(1), 343–370. https://doi.org/10.1146/annurev.ento.44.1.343
(III) Bellotti, A., Campo, B.V.H. and Hyman, G. 2012. Cassava Production and Pest Management: Present and Potential Threats in a Changing Environment. Tropical Plant Biology. 5, 39-72. DOI: https://doi.org/10.1007/s12042-011-9091-4
(IV) Colwell, J.D., Suhet, A.R. Van Raid, B. 1988. Statistical procedures for developing general soil fertility models for variable regions. CSIRO, Australia:, 68p. (CSIRO. Division of Soils. Divis. Report, 93).
(V) Daiuto, E.R., Cereda, M.P., 2006a. Influência da granulometria de grânulos de amido sobre a densidade aparente de extratos atomizados. Revista de Ciências Farmacêuticas Básica e Aplicada, 27(1), 51–56. DOI: http://hdl.handle.net/11449/69329 (Accessed May 03, 2021)
(VI) Daiuto, E.R., Cereda, M.P., 2006b. Physical characteristics and energetic evaluation of tuber and root starch gels under sterilization stress, Energia na Agricultura. 21(2), 45–60.
(VII) Eke, J., Sanni, L.O., Oyewole, O.B., Maziya-Dixon, B. 2009. Pasting, color, and granular properties of starches from local and improved cassava varieties in high rainfall region of Nigeria. International Journal of Food Properties, 12(2), 438–449. https://doi.org/10.1080/10942910701867665
(VIII) Ellis, R.P., Cochrane, M.P., Dale, M.F.B., Duffus, C.M., Lynn, A., Morrison, I.M., Prentice, R.D.M., Swanston, J.S., Tiller, S.A. 1998. ‘Starch production and industrial use’, Journal of the Science of Food and Agriculture, 77(3), 289-311. DOI: https://doi.org/10.1002/(SICI)1097-0010(199807)77:3%3C289::AID-JSFA38%3E3.0.CO;2-D
(IX) Fernandes, D.S., Santos, T.P.R., Fernandes, A.M., Leonel, M., 2019. Harvest time optimization leads to the production of native cassava starches with different properties. International Journal of Biological Macromolecules, 132, 710–721. https://doi.org/10.1016/j.ijbiomac.2019.03.245.
(X) Gu, B., Yao, Q., Li, K., Chen, S. 2013. Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Starch/Staerke, 65(3–4), 253–263. DOI: https://doi.org/10.1002/star.201200028.
(XI) Guerreiro, J.C., Azevedo, A.P., Espessato, R.R., Pietrowski, V., Ringenberg, R., Ferreira Filho, P.J., Hora, R.C., Padro, P.E., Pascutti, T. M. 2019. Migdolus fryanus Damage Causes Decrease in the Starch Content in Manihot esculenta. Journal of Agricultural Science, 11(15), 1–9. DOI: https://doi.org/10.5539/jas.v11n15p97.
(XII) Layard, M.N.J. 1973. Robust large-sample tests for homogeneity of variances. Journal of the American Statistical Association, 68 (341), 195-198.
(XIII) Onitilo, M.O. Sanni, L.O., Oyewole, O.B., Maziya-Dixon, B. 2007. Physicochemical and functional properties of native starches from cassava varieties in Southwest Nigeria. Journal of Food, Agriculture and Environment, 5(3–4), 108–114. DOI: https://hdl.handle.net/10568/92196 (Accessed January 20, 2021)
(XIV) Palou, E., Malo-Lópes, A., Barbosa-Cánovas, G.V., Welti-Chanes, J., Swanson, B.G. 1999. Polyphenoloxidase Activity and Color of Blanched and High Hydrostatic Pressure Treated Banana Puree. Journal of Food Science, 64(1), 42–45. DOI: https://doi.org/10.1111/j.1365-2621.1999.tb09857.x.
(XV) Pietrowski V., Ringenberg R., Rheinheimer A.R., Bellon P.P., Gazola D., Miranda A.M. 2010. Insetos-praga da cultura da mandioca na região Centro-Sul do Brasil. Unioeste, Marechal Cândido Rondon.
(XVI) Pinto-Zevallos, D.M., Pareja, M., Ambrogi, B.G. 2016. Current knowledge and future research perspectives on cassava (Manihot esculenta Crantz) chemical defenses: An agroecological view. Phytochemistry, 130, 10–21. DOI: https://doi.org/10.1016/j.phytochem.2016.05.013
(XVII) Rajapaksha, K.D.S.C.N., Somendrika, M.A.D., Wickramasinghe, I. 2017. Nutritional and toxicological composition analysis of selected cassava processed products, Potravinarstvo Slovak Journal of Food Sciences, 11(1), 35–42. DOI: https://doi.org/10.5219/689.
(XVIII) Reinhardt, H., NeBambi, L., Graeme, T. 2013. Save and Grow Cassava: A Guide to Sustainable Production Intensification, first ed. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/docrep/018/i3278e/i3278e.pdf. (Accessed December 10, 2020)
(XIX) Saengchana, K., Nopharatana, M., Lerdlattaporn, R., Songkasiri, W. 2015. Enhancement of starch-pulp separation in centrifugal-filtration process: Effects of particle size and variety of cassava root on free starch granule separation. Food and Bioproducts Processing, 95, 208–217. DOI: https://doi.org/10.1016/j.fbp.2015.05.008.
(XX) Santisopasri, C., Kurotjanawong, K., Chotineeranat, S., Piyachomkwan, K., Sriroth, K., Oates, C.G. 2001. Impact of water stress on yield and quality of cassava starch. Industrial Crops and Products, 13(2), 115–129. DOI: https://doi.org/10.1016/S0926-6690(00)00058-3.
(XXI) Shapiro, S.S., Wilk, M.B., 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611. DOI: https://doi.org/10.1093/biomet/52.3-4.591.
(XXII) Shigaki, T., 2015 Cassava: The Nature and Uses. In: Caballero, B., Finglas, P.M., Toldrá, F. (Ed) Encyclopedia of Food and Health, National Agricultural Research Institute, Lae, Elsevier Ltd, Papua New Guinea, 687-693. DOI: https://doi.org/10.1016/B978-0-12-384947-2.00124-0.
(XXIII) Song, X., Zhu, W., Li, Z., Zhu, J. 2010. Characteristics and application of octenyl succinic anhydride modified waxy corn starch in sausage. Starch/Staerke, 62(12), 629–636. DOI: https://doi.org/10.1002/star.201000043.
(XXIV) Zhu, F. 2015. Composition, structure, physicochemical properties, and modifications of cassava starch, Carbohydrate Polymers, 122, 456–480. DOI: https://doi.org/10.1016/j.carbpol.2014.10.063
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.