HOUSE FLY LARVAE HARVEST YIELD USING THREE DIFFERENT RATIONS OF WHEAT BRAND AND PIG MANURE AS LARVAL DEVELOPMENT MEDIA
Visualizações: 432DOI:
https://doi.org/10.32404/rean.v10i2.6997Keywords:
Water, Insects, Alternative protein, Organic residues, SubstratesAbstract
The aim of the research was to compare the yields of house fly larvae using different proportions of wheat bran and swine feces as larval development medium, in a randomized block experimental design with five replications: A-100 % wheat bran; B- 50% wheat bran and 50% swine feces; C- 100% swine feces. Measurements of the temperature of the substrates, as well as the temperature and relative humidity of the place where the flies were developing were made every 24 hours. The larval yield per m2 and kg of substrate, (including the water used to moisten the larval media) were also registered. The wheat bran substrate presented the highest temperature values (36.78 oC), with values above the ambient temperature. The relative humidity varied between 44 and 68%. The amount of water used per square meter was 28.75; 27.72 and 28.87 L for A, B and C treatments, respectively. The highest yield for all substrates was obtained during the first harvest after six days with the highest values for treatment B with 2869.11 g m²-1 and 181.16 g kg-1, respectively. The transformation of the crude protein of the substrates by the fly larvae was between 28.0 and 41.0%, with the highest value for treatment B with 2869,11 g m² -1 and 181,16 g kg2-1 . No presence of pathogenic agents was observed in the harvested larvae.
References
(I) AOAC. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. 2005. Official Methods of AOAC International https://www.aoac.org. (accessed May 15, 2010).
(II) Barnard, D., Geden, C. 1993. Influence of larval density and temperature en poultry manure on development of the house fly (Diptera: Muscidae). Environmental Entomology, 22(5), 971-977. DOI: https://doi.org/10.1093/ee/22.5.971
(III) Beniers, J., Graham, J. 2019. Effect of protein and carbohydrate feed concentrations on the growth and composition of black soldier fly (Hermetia illucens) larvae. Journal of Insects as Food and Feed, 5(3), 193-199. DOI: https://doi.org/10.3920/JIFF2018.0001
(IV) Beskin, K., Holcomd, C., Cammac, K,J., Crippen, T., Knap, A., Sweet, S., Tomberlin, J. 2018. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associate volatile emissions. Waste Management, 74, 213-220. DOI: http://doi.org/10.1016/j.wasman.2018.01.019
(V) Casanovas, E., Perales, D., Suárez, A., Medina, D., Hernández, R. 2020. Producción de larvas de mosca doméstica Musca domestica L. en diferentes sustratos. International Journal of Innovation and Scientific Research, 51(1), 1-8. http://www.ijisr.issr-journals.org/abstract.php?article=IJISR-20-257-08 (accessed October 15, 2020).
(VI) Casanovas, E., Suárez del Villar, A., Álvarez, A., Reyes, R. 2021. Rendimiento de larvas de moscas (Musca domestica L.) con diferentes proporciones de germen de maíz y heces fecales porcinas. Revista Científica Agroecosistemas, 9(2), 13-18. https://aes.ucf.edu.cu/index.php/aes/article/view/463 (accessed December 15, 2021).
(VII) Cheng, Z., Yu, L., Li, H., Xu, X., Yang, Z. 2021. Use of housefly (Musca domestica L.) larvae o bioconversion food waster for animal nutrition and organic fertilizer. Environment Science Pollution Research, 28, 48921-48928. DOI: https://doi.org/10.1007/s11356-021-14118-8.
(VIII) Cicková, H, Newton, G., Lacy, R., Kozánek, M. (2015). The use of fly larvae for organic waste treatment. Waste Management, 35(1), 68-80. DOI: https://doi.org/10.1016/j.wasman.2014.09.026
(IX) CONASA. COMISIÓN NACIONAL DE SANIDAD AVÍCOLA. 2018. Guía de buenas prácticas: Control de plagas en establecimientos avícolas. http://www.senasa.gob.ar/sites/defaut/files/ARBOL_SENASA/ANIMAL/AVES/PROD_PRIMARIA/SANIDAD_ANIMAL/MANUALES/2018/manual_plagas.pdf (accessed June 11, 2019).
(X) Cruz, S., Chim, M., LOebmann, D., Reis J., García, A. 2002. Influência da Temperatura e do Tipo de Substrato na Produção de Larvas de Musca domestica Linnaeus, 1758 (Diptera, Muscidae). Revista Brasileira Zootecnia. 31(5),1886-1889. DOI: https://doi.org/10.1590/S1516-35982002000800003
(XI) Feldmeyer, B., Kozielska, M.B.K.F.W., Beukeboom, L., Pen, I. 2008. Climatic variation and the geographical distribution of sex-determining mechanisms in the houses fly. Evolutionary Ecology Research, 10(6), 797-809. https://www.rug.nl/research/gelifes/tres/_pdf/fe_eaeer08.pdf (accessed October 15, 2020).
(XII) Florez, M., Berkebile, D., Brewer, G., Taylor D. 2019. Effects of temperature and diet in stable fly (Diptera: Muscidae) development. Insects, 10(207), 2-13. DOI: https://doi.org/10.3390/insects10070207
(XIII) Gafar, A., Sankara, F., Pousga, S., Coulibaly, K., Nacoulma, J., Ouedraogo, I., Nacro, S., Kenis, M., Sanon, A., Somda, I. 2019. Production de masse de larves de Musca domestica L. (Diptera: Muscidae) pour l’aviculture au Burkina Faso: Analyse des facteurs déterminants en oviposition naturelle. Journal of Applied Biosciences, 134, 13689–13701 DOI: https://doi.org/10.4314/jab.v134i1.6
(XIV) Gandal, H.; Zannou-Boukaril, E.T., Kenis, M.C.A.A.M. Chrysostome, Mensah, G.A. 2019. Potentials of animal, crop and agri-food wastes for the production of fly larvae. Journal of Insects as Food and Feed, 5(2) 59-67. DOI: https://doi.org/10.3920/JIFF2017.0064.
(XV) Hussein, M., Pillai, V., Goddard, J., Park, H., Kothapalli, K., Ross, D., Ketterings, Q., Brenna, J., Milstein, M., Marquis, H. 2017. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. Plos One, 12(2) 1-19 DOI: https://doi.org/10.1371/journal.pone.0171708.
(XVI) INSMET. INSTITUTO DE METEOROLOGÍA. CIENFUEGOS. 2021. Datos meteorológicos mes de octubre 2021. www.insmet.cu (accessed Deciembre 10, 2021)
(XVII) Koné, N., Sylla, M., Nacambo, S., Kenis, M. 2017. Production of house fly larvae for animal feed through natural oviposition. Journal of Insects as Food and Feed, 3(3), 177-186. DOI: https://doi.org/10.3920/JIFF2018.S1
(XVIII) Lähteenmäki-Uutela, A., Marimuthu, S., Meijer, N. 2021. Regulations on insects as food and feed: a global comparison. Journal of Insects as Food and Feed, 7(5), 849-856. DOI: https://doi.org/10.3920/JIIFF2020.0066
(XIX) Leyo, I., Ousman, Z., Francis, F., Megido, R. 2021. Techniques de production d’asticots de mouches domestiques (Musca domestica L. 1758) pour l’alimentation des volailles, synthèse bibliographique. Tropicultura, 39(2), 1-23 DOI: https://doi.org/10.25518/2295-8010.1813
(XX) Makkar, H., Tran, G., Heuzé, V., Ankers, P. (2014). State of the art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33 DOI: https://doi.org/10.1016/j.anifeedsci.2014.07.008
(XXI) Mariscal, L. 2007. Tratamiento excretas cerdos. INIFA/ CENID, Córdoba. www.fao.org/wairdocs/LEAD/X6372S/x6372s08.htm (accessed October 15, 2020).
(XXII) Martínez, A., Arriola, L., Sahagún, A. 2015. Inhibición de la formación de pupas de Musca domestica L. por Beauveria bassiana (Balsamo) Vuillemin nativa del estado de Guanajuato. Jóvenes en la Ciencia, 1(2), 29-32. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/218. (accesed October 15, 2020).
(XXIII) Miranda, C., Cammack, J., Tomberlin, J. 2020. Life-history traits of house fly, Musca domestica L. (Diptera: Muscidae), reared on thee manure types. Journal of insects as Food and Feed, 6(1), 81-90. DOI: https://doi.org/10.3920/JIFF2019.0001.
(XXIV) Ossey, Y., Koumi, A., Koffi, K., Atse, B., Kouame, L. 2012. Use of soybean, bovine brain and maggot as sources of dietary protein in larval Heterobranchus longifilis (Valenciennes, 1840). Journal of Animal and Plant Sciences, 15(1), 2099-2108. http://www.m.elewa.org/JAPS/2012/15.1/Abstract3-atse.html (accesed May 20, 2019)
(XXV) Pastor, B., Velasquez, Y., Gobbi, P., Rojo, S. 2015. Conversion of organic wastes into fly larval biomass: bottlenecks and challenges. Journal of Insects as Food and Feed, 1(3), 179-193. DOI: https://doi.org/10.3920/JIFF2014.0024
(XXVI) Pieterse, E., Pretorius, Q. 2013. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays. Animal Production Science, 54(5), 347-355. DOI: https://doi.org/10.1021/AN12370.
(XXVII) Pino, M. 2018. Por qué todavía no comemos insectos: marco legal en la Unión Europea. Revista de Bioética y Derecho, (42), 311-341 https://scielo.isciii.es/pdf/bioetica/n42/1886-5887-bioetica-42-00311.pdf (accessed May 20, 2019).
(XXVIII) PROteINSECT. Insects as Sustainable Sources of Protein. 2016. Adressing the need for feeds of the future today. Insect Protein - Feed for the Future. www.proteinsect.eu (accessed April 10, 2019).
(XXIX) Rubio, B. 2015. Crisis de hegemonía y transición capitalista en el ámbito agroalimentario mundial. Espacio abierto, 24(2), 235-254. https://produccioncientificaluz.org/index.php/espacio/article/view/20299/20214 (accessed April 10, 2019).
(XXX) Sanou, A., Sankara, F., Pousga, S., Coulibaly, K., Nacoulma, J., Ouedraogo, I., Nacro, S., Kenis, M., Sanon, A., Sonda, I. 2019. Production de masse de larves de Musca domestica L. (Diptera: Muscidae) pour l’aviculture au Burkina Faso: Analyse des facteurs déterminants en oviposition naturelle. Journal of Applied Biosciences. 134, 13689-13701. DOI: https://dx.doi.org/10.4314/jab.v134i1.6
(XXXI) Schmidtmann, T., System, E., Martin. 1992. Relationship between selected bacteria and the growth of immature house flies, Musca domestica, in an axenic test system. Journal Medic Entomology, (29)2, 232-235. DOI: https://dx.doi.org/10.1093/jmedent/29.2.232.
(XXXII) Sequeira, R., Millar, L., Bartels, D. 2001. Identification of Susceptible Areas for the Establishment of Anastrepha spp. Fruit Flies in the United States and Analysis of Selected Pathways. Raleigh. NC USDA-APHISPPQ Center Plant Health Science Technology. https://www.aphis.usda.gov/plant_health/plant_pest_info/fruit_flies/downloads/isa.pdf (accessed May 11, 2019).
(XXXIII) van Huis, A. 2015. Edible insects contributing to food security? Agriculture and Food Security, 4(20), 2-9 DOI: https://doi.org/10.1186/s40066-015-0041-5
(XXXIV) Wang, H., Zhang, Z., Czapar, G., Winkler, M., Zheng, J. 2013. A full-scale house fly (Diptera: Muscidae) larvae bioconversion system for value-added swine manure reduction. Waste Management and Research, 31(2), 223-231
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.