POPULATION FLUCTUATION OF SUCKING INSECTS IN IRRIGATED AND NON-IRRIGATED COTTON CROPS

Visualizações: 241

Authors

DOI:

https://doi.org/10.32404/rean.v10i2.7253

Keywords:

Gossypium hirsutum L., Aphis gossypii, Bemisia, Irrigation

Abstract

In the cotton crop (Gossypium hirsutum L.), there is a complexity of pests that appear systematically, thus significantly reducing crop yield; and their population fluctuation is strongly influenced by meteorological conditions that result in a greater or lesser density of these insects. Thus, this work aimed to evaluate the population fluctuation of insect pests with sucking feeding behavior in an area with and without irrigation in the cotton plant under second-harvest conditions. The experiment was developed at the State University of Maringá - Campus of Umuarama. In the experimental area, grid meshes of 10 × 10 m were demarcated, forming plots of 100 m², resulting in a total of 64 points in the irrigated area and 42 points in the non-irrigated area. The sampling points were demarcated in the center of each grid where three randomly selected plants were sampled. Samplings were carried out weekly, from 37 to 122 days after the emergence (DAE) of cotton, examining the aerial part of the plant, to observe the presence of aphids (Aphis gossypii), thrips (Frankliniella schultzei), and whitefly (Bemisia tabaci). The non-irrigated area provided the highest population peaks of whiteflies and thrips. On the other hand, the irrigated area had a higher incidence of aphids. However, with the increase in the population of ladybugs, the incidence of pests reduced significantly, showing the efficiency and importance of the control carried out by natural predators.

Author Biographies

Cleverton Timóteo de Assunção, State University of Maringá

State University of Maringá, Campus Regional of Umuarama, Umuarama, Paraná, Brazil.

Daniel Haraguchi Santos, State University of Maringá

State University of Maringá, Campus Regional of Umuarama, Umuarama, Paraná, Brazil.

Greissi Tente Giraldi, Federal University of Paraná

Federal University of Paraná, Curitiba, Paraná, Brazil. 

Ana Daniela Lopes, Paranaense Unviersity

Paranaense University, Umuarama, Paraná, Brazil. 

Joao Paulo Francisco, State University of Maringá

State University of Maringá, Campus Regional of Umuarama, Umaurama, Paraná, Brazil. 

Julio Cesar Guerreiro, State University of Maringá

State University of Maringá, Campus Regional of Umuarama, Umuarama, Paraná, Brazil.

References

(I) Abdelraheem, A., Kuraparthy, V., Hinze, L., Stelly, D., Wedegaertner, T., Zhang, J., 2021.Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton. Industrial Crops and Products, 169, e113645. DOI: https://doi.org/10.1016/j.indcrop.2021.113645.

(II) ABRAPA. ASSOCIAÇÃO BRASILEIRA DOS PRODUTORES DE ALGODÃO. 2021. Algodão no Brasil. https://www.abrapa.com.br/Paginas/dados/algodao-no-brasil.aspx. (acessado 28 de março de 2021)

(III) Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998. FAO Irrigation and drainage paper nº. 56. Food and Agriculture Organization of the United Nations, 56(97), e156.

(IV) Alves, A.N., Souza, W.S.R., Borges, D.L. 2020. Cotton pests classification in field-based images using deep residual networks. Computers and Electronics in Agriculture. 174, e105488. DOI: https://doi.org/10.1016/j.compag.2020.105488.

(V) Alves, L.R.A., Sanches, A.L.R., Osaki, M., Barros, G.S.A.C., Adami, A.C.O. 2021.Cadeia agroindustrial e transmissão de preços do algodão ao consumidor brasileiro. Revista de Economia e Sociologia Rural, 59(3), e232806. DOI: https://doi.org/10.1590/1806-9479.2021.232806.

(VI) Barros, E.M., Rolim G.G., Torres J.B. 2019. Grandes culturas: pragas iniciais. Revista Cultivar. 19(235). 1516-358x.

(VII) Barros, R., Degrande, P.E., Ribeiro, J.F., Rodrigues, A.L.L., Nogueira, R.F., Fernandes, M.G. 2006. Flutuação populacional de insetos predadores associados a pragas do algodoeiro. Arquivos do Instituto Biológico, 73(1), 57-64. http://www.biologico.sp.gov.br/uploads/docs/arq/V73_1/barros.PDF.

(VIII) Borém, A., Freire E.C., 2014. Algodão: do plantio à colheita. Editora UFV, Viçosa, p. 223-240.

(IX) Chi, B., Zhang, D., Dong, H. 2021. Control of cotton pests and diseases by intercropping: A review. Journal of Integrative Agriculture. 20(12), 3089–3100. DOI: https://doi.org/10.1016/S2095-3119(20)63318-4.

(X) Cividanes, F.J., Cividanes, T.M. 2010. Ocorrência de formas aladas de pulgões e sua relação com fatores meteorológicos e plantas hospedeiras. Pesquisa Agropecuária Brasileira, 45(1), 7-15. DOI: https://doi.org/10.1590/S0100-204X2010000100002

(XI) Doorenbos, J., Kassam, A.H. 1979. Yield response to water. Irrigation and Drainage, 33, p. 257.

(XII) Doorenbos, J., Kassam, A.H., 1994. Efeito da água no rendimento das culturas. Estudos da FAO: Irrigação e Drenagem, UFPB, Campina Grande, 33.

(XIII) Edde, P.A. 2021. Arthropod pests of cotton (Gossypiumhirsutum L.). In: Edde, P.A. Field Crop Arthropod Pests of Economic Importance. Academic Press, New York. p. 208–274. DOI: https://doi.org/10.1016/B978-0-12-818621-3.00003-3.

(XIV) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. 2014. Centro Nacional de Pesquisa do Algodão. Cultivo do algodão irrigado. Sistemas de Produção 3. 3ª edição. http://sistemasdeprodução.cnptia.embrapa.br. (acessado em 13 de abril de 2023).

(XV) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. 2018. Sistema Brasileiro de Classificação dos Solos. 5ª ed. Revista e Ampliada. Brasília. https://www.embrapa.br/busca-de-publicacoes.

(XVI) Fiorentin, R., Junior, F., Pinno, S., Avila, A. 2013. Utilização de joaninhas no controle biológico de pulgões. Scientia Prima, 1(1), 27–32. DOI: https://doi.org/10.18010/sp.v5i5.3.

(XVII) Gibb, T., 2015. Making management recommendations using IPM. In: Gibb, T., 1. Ed. Contemporary Insect Diagnostics. The Art and Science of Practical Entomology. Academic Press, New York. p. 279–305. DOI: https://doi.org/10.1016/B978-0-12-404623-8.00008-9.

(XVIII) Held, D.W. 2020.Abiotic factors and interactions with urban pests. In: Held, David. W. Urban Landscape Entomology. Academic Press, New York. p. 45-80.

(XIX) Honek, A. 1985. Temperature and plant vigour influence annual variation of abundance in cereal aphids (Homoptera, Aphididae). ZeitschriftFürPflanzenkrankheiten Und Pflanzenschutz. Journal of Plant Diseases and Protection, 92(6), 588–593. https://www.jstor.org/stable/43383081.

(XX) Huberty, A.F., Denno, R.F. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology, 85(1), 1383-1398. https://www.jstor.org/stable/3450179.

(XXI) IAPAR. INSTITUTO AGRONÔMICO DO PARANÁ. 2014. Agrometeorologia. Redes de Estações Meteorológicas do Paraná. Estações Meteorológicas Convencionais. Umuarama. https://www.idrparana.pr.gov.br. (acessado 15 de março de 2021).

(XXII) Jiang, H., Tian, Y., Yan, W., Chen, J., Zhang, Z., Xu, H. 2020. Drip chemigation of flonicamid effectively controls cotton aphid (Aphis gossypii) and is benign to lady beetle (Coccinellaseptempunctata) and lacewing larva (Chrysoperlasinica). Crop Protecti, 129, e105039. DOI: https://doi.org/10.1016/j.cropro.2019.105039.

(XXIII) Marin, F., Jones, J.W., Boote, K.J., 2017. A stochastic method for crop models: Including uncertainty in a sugarcane model. Agronomy Journal, 109(2), 483–495. DOI: https://doi.org/10.2134/agronj2016.02.0103.

(XXIV) Miranda, J.E. 2010, Manejo Integrado de Pragas do Algodoeiro no Cerrado Brasileiro. Circular técnica. Embrapa Algodão, Campina Grande. https://www.embrapa.br/documents/1344498/2767789/manejo-integradode-pragas-do-algodoeirono-Cerrado-brasileiro.pdf/a9c122a3-6d07-44b4-a281-6c50682c31bd. (acessado 08 de fevereiro de 2022.

(XXV) Moreira, A.L., Tiecher, P.R., Duarte, S.M., Samuelsson, E., 2022. Joaninhas: Controle de pragas. Revista Científica da Faculdade de Educação e Meio Ambiente, 13, e2179-4200. p.1–2. DOI: http://dx.doi.org/10.31072.

(XXVI) Nadeem, A., Tahir, H.M., Khan, A.A. 2022. Plant age, crop stage and surrounding habitats: their impact on the sucking pests and predator complex in cotton (Gossypiumhirsutum L.) field plots in arid climate at district Layyah, Punjab, Pakistan. Brazilian Journal of Biology, 82, e236494. DOI: https://doi.org/10.1590/1519-6984.236494.

(XXVII) Neves, M.F., Junqueira, M., Pinto, A.A., 2017. Cadeia do algodão brasileiro, safra 2016/2017: desafios e estratégias. 3ª ed. Associação Brasileira dos Produtores de Algodão, Brasília.

(XXVIII) Oliveira, M.D., Barbosa, P.R.R., Silva-Torres, C.S.A., Silva, R.R., Barros, E.M., Torres, J.B. 2014. Reproductive performance of striped mealybugFerrisiavirgataCockerell (Hemiptera: Pseudococcidae) on water-stressed cotton plants subjected to nitrogen fertilization. Arthropod-Plant Interactions, 8, 461-468. DOI: http://dx.doi.org/10.1007/s11829-014-9320-5.

(XXIX) Peel, M.C., Finlayson, B.L., Mcmahon, T.A., 2007. "Updated world map of the Köppen-Geiger climate classification". Hydrology and Earth System Sciences, 11(5), 1633–1644. DOI: https://doi.org/10.5194/hess-11-1633-2007.

(XXX) Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., 1997. Recomendações de adubação e calagem para o Estado de São Paulo. 2. ed. Instituto Agronômico/Fundação IAC, Campinas. 285p. (Boletim técnico n.º 100).

(XXXI) Ramos, T.O., Cividanes, F.J., Cividanes, T.M. 2018. Impacto dos insetos predadores e fatores meteorológicos sobre pulgões em couve consorciada Impact of predatory insects and weather factors on aphids on kale intercropping. Revista Agronómica Del Noroeste Argentino, 38(2), 105–113. http://www.scielo.org.ar/pdf/ranar/v38n2/v38n2a02.pdf.

(XXXII) R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

(XXXIII) Rosolem, C.A., Kawakami, E.M., Chiavegato, E.J., Echer, F.R., Brito, G.G., Carvalho, H.R., Snider, J.L., Bogiani, J.C., Bernardes, M.S., Yates, S., 2014. O algodoeiro e os estresses abióticos: temperatura, luz, água e nutrientes. Instituto Mato-Grossense de algodão, Cuiabá.

(XXXIV) Silva, A.F.C. 2022. Pragas, patógenos e plantas na história dos sistemas agroecológicos. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, Belém, 17(1), e20210023. DOI: https://doi.org/10.1590/2178-2547-BGOELDI-2021-0023.

(XXXV) Snider, J.L., Kawakami, E.M. 2014.Efeito da temperatura no desenvolvimento do algodão. In: Echer, F.R. (Org.). O algodoeiro e os estresses abióticos: temperatura, luz, água e nutrientes. Cuiabá, Instituto Mato-Grossense de algodão, Cuiabá. p. 13-30.

(XXXVI) Stopar, K., Mackiewicz-Talarczyk, M., Bartol, T. 2021. Cotton fiber in Web of Science and Scopus: mapping and visualization of research topics and publishing patterns. Journal Natural Fibers, 18(4)547–558. DOI: https://doi.org/10.1080/15440478.2019.1636742.

(XXXVII) Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.Soil science, 37(1), 29-38. https://journals.lww.com/soilsci/citation.

(XXXVIII) Yuan, B.Z., Sun, J. 2021. Bibliometric Analysis of Cotton (Gossypium spp.) Research Based on Web of Science Agronomy Category.The Journal of Cotton Science 25(3), 194–204. DOI: https://doi.org/10.56454/JHFY3697

Downloads

Published

2023-06-19

How to Cite

Timóteo de Assunção, C., Haraguchi Santos, D., Tente Giraldi, G., Lopes, A. D., Francisco, J. P., & Guerreiro, J. C. (2023). POPULATION FLUCTUATION OF SUCKING INSECTS IN IRRIGATED AND NON-IRRIGATED COTTON CROPS. REVISTA DE AGRICULTURA NEOTROPICAL, 10(2), e7253. https://doi.org/10.32404/rean.v10i2.7253