IMPACT OF FOREST CONVERSION TO PASTURE ON SOIL ENZYMATIC ACTIVITY IN THE NORTHERN AMAZON

Visualizações: 133

Authors

DOI:

https://doi.org/10.32404/rean.v11i3.8585

Keywords:

Brachiaria, Biogeochemical Cycles, Livestock Farming in the Amazon, Environmental Services

Abstract

The conversion of forests to pastures in the Amazon results in deforestation and the loss of environmental services. This practice affects biogeochemical cycles and impairs soil enzyme activity, which is essential for maintaining soil quality. This study aimed to investigate the impact of converting part of the Amazon forest into pastures, focusing on soil enzyme activity. The study was conducted at Fazenda Canto Verde, Roraima, comparing native forest areas and pastures of Brachiaria brizantha and Brachiaria humidicola, established on Haplic acrisol, without fertilization or tillage, under a management regime of 30 days of grazing and 60 days of rest. Sampling involved 12 mini trenches per hectare at two depths, with analysis of enzyme activity post-incubation. Higher activity of carbon cycle enzymes (Cellulase, Invertase, β-Glucosidase) was observed in the forest compared to pastures, especially with B. humidicola. Nitrogen cycle enzymes (Urease, BAA-Protease) were more active in the forest, while B. humidicola showed the highest Casein-Protease activity. In the phosphorus and sulfur cycles, the forest led in Phosphomonoesterase and Phosphodiesterase, while B. humidicola excelled in Arylsulfatase. This study demonstrates that replacing forest with pastures significantly alters soil functionality, impacting biogeochemical cycles and their ecological functions.

Author Biographies

Sandra Cátia Pereira Uchôa, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil. 

Lucas Feitosa Pereira, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil. 

Carlos Henrique Lima de Matos, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil. 

Ingridy do Nascimento Tavares, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil.

José Maria Arcanjo Alves, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil. 

José Frutuoso do Vale Júnior, Universidade Federal de Roraima

Universidade Federal de Roraima, Campus Cauamé, Boa Vista, Roraima, Brasil. 

References

(I) Assis, P.C.R., Batista, I., Correia, M.E.F., Pereira, M.G., Bieluczyk, W., Schiavo, J.A., Rouws, J.R.C., 2015. Atributos físicos do solo em sistemas de integração lavoura-pecuária-floresta. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(4), 309–316. DOI: https://doi.org/10.1590/1807-1929/agriambi.v19n4p309-316.

(II) Bandick, A.K., Dick, R.P., 1999. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471-1479. DOI: https://doi.org/10.1016/S0038-0717(99)00051-6.

(III) Barni, P.E., Batista, I., Correia, M.E.F., Pereira, M.G., Bieluczyk, W., Schiavo, J.A., Rouws, J.R.C., 2016. Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. Forest Ecology and Management, 377, 170–181. DOI: https://doi.org/10.1016/j.foreco.2016.07.010.

(IV) Batista, I., Correia, M.E.F., Pereira, M.G., Bieluczyk, W., Schiavo, J.A., Rouws, J.R.C., 2014. Frações oxidáveis do carbono orgânico total e macrofauna edáfica em sistema de integração lavoura-pecuária. Revista Brasileira de Ciência do Solo, 38, 797-809. DOI: https://doi.org/10.1590/S0100-06832014000300011.

(V) Benedetti, U.G., Batista, I., Correia, M.E.F., Pereira, M.G., Bieluczyk, W., Schiavo, J.A., Rouws, J.R.C., 2011. Gênese, química e mineralogia de solos derivados de sedimentos pliopleistocênicos e de rochas vulcânicas básicas em Roraima, norte amazônico. Revista Brasileira de Ciência do Solo, 35, 299-312. DOI: https://doi.org/10.1590/S0100-06832011000200002.

(VI) Barbosa, R.I., Ferreira, E.J.G., Castellón, E.G., 1997. Distribuição das chuvas em Roraima. In: Homem, ambiente e ecologia no estado de Roraima. INPA, Manaus. v. 1, p. 325-335.

(VII) Borghetti, C., Gioacchini, P., Marzadori, C., Gessa, C., 2003. Activity and stability of urease-hydroxyapatite and urease-hydroxyapatite-humic acid complexes. Biology and Fertility of Soils, 38, 96–101. DOI: https://doi.org/10.1007/s00374-003-0628-z.

(VIII) Coura, F.T.V., Batista, I., Correia, M.E.F., Pereira, M.G., Bieluczyk, W., Schiavo, J.A., Rouws, J.R.C., 2020. Activity invertase and amylase in Marandu grass under shading and nitrogen fertilization. Acta Scientiarum. Agronomy, 42, e42496. http://periodicos.uem.br/ojs/acta. DOI: https://doi.org/10.4025/actasciagron.v42i1.42496.

(IX) Durrer, A., Margenot, A.J., Silva, L.C.R., Bohannan, B. J. M., Nusslein, K., van Haren, J., Andreote, F.D., Parikh, S.J., Rodigues, J.L.M., 2021. Beyond total carbon: conversion of Amazon forest to pasture alters indicators of soil C cycling. Biogeochemistry, 152, 179–194. DOI: https://doi.org/10.1007/s10533-020-00743-x.

(X) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. 2018. Sistema Brasileiro de Classificação dos Solos. 5. ed. Brasília: Embrapa Solos.

(XI) FAO. ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA AGRICULTURA E ALIMENTAÇÃO. 2015. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Roma. https://www.fao.org/3/i3794en/I3794en.pdf. (acessado 15 de dezembro de 2023).

(XII) Ferreira, D.F., 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042. DOI: https://doi.org/10.1590/S1413-70542011000600001.

(XIII) Henrique, N.S., Schlindwein, J.A., Pereira, E.C.F., 2018. Sistemas e sucessões de cultivos na fertilidade de um solo da região da Amazônia. Revista de Agricultura e Ambiente, 11(3), 863-877. DOI: http://dx.doi.org/10.17765/2176-9168.2018v11n3p863-877.

(XIV) Hout, C., Zhou, Y., Philp, J.N.M., Denton, M.D., 2020. Root depth development in tropical perennial forage grasses is related to root angle, root diameter, and leaf area. Plant and Soil, 456, 145-158. DOI: https://doi.org/10.1007/s11104-020-04701-2.

(XV) INPE. INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. 2023. Taxas PRODES Amazônia - 1988 a 2023 (km²). http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes. (acessado 4 de setembro de 2023).

(XVI) Lange, A., Dantas, J., Freddi, O.S., Buratto, W., Spaziani, C., Caione, G., 2019. Degradação do solo e pecuária extensiva no norte de Mato Grosso. Nativa, 7(6), 642-648. DOI: http://dx.doi.org/10.31413/nativa.v7i6.6838.

(XVII) Laiton-Medina, J.F., Hurtado-Nery, V.L., Granados-Moreno, J.E., 2021. Evaluación de tres especies de Brachiaria spp con pastoreo rotacional para ceba bovina. Orinoquia, 25(1), 15-22. DOI: https://doi.org/10.22579/20112629.652.

(XVIII) Moreira, A., Malavolta, E., 2004. Dinâmica da matéria orgânica e da biomassa microbiana em solo submetido a diferentes sistemas de manejo na Amazônia Ocidental. Pesquisa Agropecuária Brasileira, 39(11), 1103-1110. DOI: https://doi.org/10.1590/S0100-204X2004001100008.

(XIX) Matos, C. H. L., Melo, V. F., Uchôa, S. C. P., Pereira, R. A., Nascimento, P. P. R. R. (2023). Phosphorus extractants for soils in the humid tropical region of Brazil. Revista Ciência Agronômica, 54, 1-11. DOI: https://doi.org/10.5935/1806-6690.20230042.

(XX) Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S., 2012. Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48, 743–762. DOI: https://doi.org/10.1007/s00374-012-0723-0.

(XXI) Nannipieri, P., Trasar-Cepeda, C., Dick, R.P., 2017. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 54, 11-19. DOI: https://doi.org/10.1007/s00374-017-1245-6.

(XXII) Rodrigues, M., Silveira Rabêlo, F.H., de Castro, H.A., Roboredo, D., Camillo de Carvalho, M.A., Garcia Roque, C., 2017. Changes in chemical properties by use and management of an Oxisol in the Amazon biome. Revista Caatinga, 30(2), 278-286. DOI: https://doi.org/10.1590/1983-21252017v30n202rc

(XXIII) Soltangheisi, A. Cherubin, M. R., Obregón Alvarez, D., Fonseca de Souza, L., Bieluczyk, W., Navroski, D., Bettoni Teles, A. P., Pavinato, P. S., Martinelli, L. A., Tsai, S. M., Camargo, P. B., 2019. Forest conversion to pasture affects soil phosphorus dynamics and nutritional status in Brazilian Amazon. Soil and Tillage Research, 194, 104330. DOI: https://doi.org/10.1016/j.still.2019.104330.

(XXIV) Silva-Olaya, A.M., Mora-Motta, D. A., Cherubin, M. R., Grados, D., Somenahally, A., Ortiz Morea, F. A., 2021. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLOS ONE, 16(8), e0255669. DOI: https://doi.org/10.1371/journal.pone.0255669.

(XXV) Schaap, K.J., Fuchslueger, L., Quesada, C. A., Hofhansl, F., Valverde-Barrantes, O., Camargo, P. B., Hoosbeek, M. R., 2023. Seasonal fluctuations of extracellular enzyme activities are related to the biogeochemical cycling of C, N, and P in a tropical terra-firme forest. Biogeochemistry, 163, 1–15. DOI: https://doi.org/10.1007/s10533-022-01009-4.

(XXVI) Sobucki, L.; Ramos, R.F., Meireles, L.A., Antoniolli, Z.I., Jacques, R.J.S., 2021. Contribution of enzymes to soil quality and the evolution of research in Brazil. Revista Brasileira de Ciência do Solo, 45, e0210109. DOI: https://doi.org/10.36783/18069657rbcs20210109.

(XXVII) Tabatabai, M.A., 1994. Soil enzymes. In R.W. Weaver (Ed.), Methods of soil analysis: Microbiological and biochemical properties. 5th ed. Madison: Soil Science Society of America. p. 775-833.

(XXVIII) Trasar-Cepeda, C., Leirós, M.C., Gil-Sotres, F., 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): specific parameters. Soil Biology and Biochemistry, 32, 747-755. DOI: https://doi.org/10.1016/S0038-0717(99)00195-9.

(XXIX) Vasconcellos, R.L.F., Bini, D., Paula, A.M., Andrade, J.B., Cardoso, E.J.B.N., 2013. Nitrogênio, carbono e compactação do solo como fatores limitantes do processo de recuperação de matas ciliares. Revista Brasileira de Ciência do Solo, 37, 1164-1173. DOI: https://doi.org/10.1590/S0100-06832013000500006.

(XXX) Wang, W., Han, L., Zhang, X., 2020. Winter cover crops effects on soil microbial characteristics in sandy areas of Northern Shaanxi, China. Revista Brasileira de Ciência do Solo, 44, e0190173. DOI: https://doi.org/10.36783/18069657rbcs20190173.

(XXXI) Zaninetti, R. A., Moreira, A., Moraes, L. A. C., 2016. Atributos físicos, químicos e biológicos de Latossolo Amarelo na conversão de floresta primária para seringais na Amazônia. Pesquisa Agropecuária Brasileira, 51(9), 1061-1068. DOI: https://doi.org/10.1590/S0100-204X2016000900005.

Downloads

Published

2024-07-31

How to Cite

Uchôa, S. C. P., Pereira, L. F., Matos, C. H. L. de, Tavares, I. do N., Alves, J. M. A., & Vale Júnior, J. F. do. (2024). IMPACT OF FOREST CONVERSION TO PASTURE ON SOIL ENZYMATIC ACTIVITY IN THE NORTHERN AMAZON. REVISTA DE AGRICULTURA NEOTROPICAL, 11(3), e8585. https://doi.org/10.32404/rean.v11i3.8585