DEVELOPMENT AND QUALITY OF ‘CANTALOUPE’ MELON SEEDLINGS UNDER THE INFLUENCE OF Chlorella SP. VIA ROOT

Authors

DOI:

https://doi.org/10.32404/rean.v12i1.8931

Keywords:

Cucumis melo, Soil fertility, Biostimulant, Microalgae, Propagation

Abstract

The search for better quality inputs with lower environmental impact has been highlighted in agricultural technology research. Microalgae can improve soil fertility and seedling development. This study aimed to evaluate the influence of suspensions as a biostimulant based on the microalgae Chlorella sp. applied via root on the production of ‘Cantaloupe’ melon seedlings. The experimental design used was completely randomized, with ten replications, in a scheme of split plots in time. The plots consisted of three concentrations (0.0, 0.8, and 1.6%) and the subplots consisted of five evaluation periods (15, 18, 21, 24, and 27 days after sowing). The treatments significantly influenced the number of leaves, total leaf area, aerial part fresh mass, root fresh mass, and total fresh mass and dry mass (p<0.01), as well as plant height and stem diameter at 5% probability level by the ‘F’ test. The concentration of 1.6% was the one that showed the best performance for the increase in leaves, plant height, total leaf area, stem diameter, and fresh and dry phytomass of melon seedlings. The most significant accumulation of fresh and dry mass in the seedlings was obtained at the concentration of 1.6% of Chlorella sp.

Author Biographies

Ana Paula Nunes Ferreira, Universidade Federal Rural do Semi-Árido

Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brasil.

Kilson Pinheiro Lopes, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brasil.

Railene Hérica Carlos Rocha Araújo, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brasil.

José Franciraldo de Lima, Universidade Federal do ABC

Universidade Federal do ABC, Santo André, São Paulo, Brasil.

Josinaldo Lopes Araújo, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Campina Grande, Paraíba, Brasil.

Agda Malany Forte de Oliveira, Universidade Federal Rural do Semi-Árido

Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brasil.

Kaikí Nogueira Ferreira, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Pombal, Paraíba, Brasil.

Kalinny de Araújo Alves, Universidade Federal de Campina Grande

Universidade Federal de Campina Grande, Pombal, Paraíba, Brasil.

Rita Magally Oliveira da Silva Marcelino, Universidade Federal Rural do Semi-Árido

Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brasil.

References

(I) Albano, F.G., Cavalcante, Í.H., Machado, J.S., Lacerda, C.F.D., Silva, E.R.D., Sousa, H.G.D., 2017. A new substrate containing agroindustrial carnauba residue is used for the production of papaya under foliar fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 128-133. https://doi.org/10.1590/1807-199/agriambi.v21n2p128-133.

(II) Araújo, D.L., Maia Júnior, S.O., Silva, S.F., Andrade, J.D.F.R., Araújo, D.L., 2013. Produção de mudas de melão ‘Cantaloupe’ em diferentes tipos de substratos. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 8(3), 46. https://dialnet.unirioja.es/servlet/articulo?codigo=7397626.

(III) Barone, V., Bagliei, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., Cagnin, M., Pizzeghello, D., Moliterni, V.M.C., Mandolino, G., Fornasier, F., Squartini, A., Nardi, S., Concheri, G., 2018. Root morphological, and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology, 30, 1061-1071. https://doi.org/10.1007/s10811-017-1283-3.

(IV) Caldeira, M.V.W., Favalessa, M., Gonçalves, E.O., Delarmelina, W.M., Santos, F.E.V., Viera, M., 2014. Lodo de esgoto como componente de substrato para produção de mudas de Acacia mangium Wild. Comunicata Scientiae, 5(1), 34-43.41. https://dialnet.unirioja.es/servlet/articulo?codigo=5022030.

(V) Calvo, P., Nelson, L., Kloepper, J.W. (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3-41. https://doi.org/10.1007/s11104-014-2131-8.

(VI) Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., De Gelder, L., 2016. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid, and sugar levels. Journal of applied phycology, 28, 2367-2377. https://doi.org/10.1007/s10811-015-0775-2.

(VII) Cruz, C.A.F., Paiva H.N., Guerrero R.A., 2006. Efeito da adubação nitrogenada na produção de mudas de sete-cascas (Samanea inopinata (Harms) Ducke). Revista Árvore, 30, 537-546. https://doi.org/10.1590/S0100-67622006000400006.

(VIII) Cruz, C.A.F., Paiva, H.N., Cunha, A.C.M., Neves, J.C.L., 2011. Resposta de mudas de Senna macranthera cultivadas em Argissolo Vermelho-Amarelo a macronutrientes. Ciência Florestal, 21, 63-76. https://doi.org/10.5902/198050982748.

(IX) Deepika, P., MubarakAli, D., 2020. Production, and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatalysis, and agricultural biotechnology, 28(1): 101701. https://doi.org/10.1016/j.bcab.2020.101701.

(X) Dickson, A., Leaf, A.L., Hosnes, J.F., 1960. Quality appraisal of white spruce, and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10-13. https://doi.org/10.5558/tfc36010-1.

(XI) EMBRAPA, 1997. Manual de métodos de análise de solo. Centro Nacional de Pesquisa de Solos. 2. ed. revisada e atualizada. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/330804/1/Manualdemetodosdeanalisedesolo2ed1997.pdf.

(XII) Ferreira, D.F., 2019. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, 37(4), 529-535. https://doi.org/10.28951/rbb.v37i4.450.

(XIII) Franco Junior, K.S., Terra, A.B.C., Teruel, T.R., Mantovani, J.R., Florentino, L.A., 2018. Effect of cover crops, and bioactivators in coffee production, and chemical properties of soil. Coffee Science, 13(4). https://coffeescience.ufla.br/index.php/Coffeescience/article/view/1516.

(XIV) González-Pérez, B.K., Rivas-Castillo, A.M., Valdez-Calderón, A., Gayosso-Morales, M.A., 2022. Microalgae as biostimulants: A new approach in agriculture. World Journal of Microbiology, and Biotechnology, 38(1), 4. https://doi.org/10.1007/s11274-021-03192-2.

(XV) Guedes W.A., Araújo R.H.C.R., Rocha J.L.A., Lima, J.F., Dias, G.A., Oliveira, A.M.F., Lima, R.F., Oliveira, L.M., 2018. Production of papaya seedlings using Spirulina platensis as a biostimulant applied on leaf, and root. Journal of Experimental Agriculture International, 28(1), 1-9. https://doi.org/10.9734/JEAI/2018/45053.

(XVI) Jimenez, R., Markou, G., Tayibi, S., Barakat, A., Chapsal, C., Monlau, F., 2020. Production of microalgal slow-release fertilizer by valorizing liquid agricultural digestate: growth experiments with tomatoes. Applied Sciences, 10(11), 3890. https://doi.org/10.3390/app10113890

(XVII) Khoobkar, Z., Delavari Amrei, H., 2020. Effect of fluorescent dye positioning, and concentration on the growth parameters, and lipid content of Chlorella sp. in a flat panel photobioreactor. Biotechnology Letters, 42, 1397-1405. https://doi.org/10.1007/s10529-020-02862-9.

(XVIII) Li, J., Lens, P.N.L., Ferrer, I., Du Laing, G., 2021. Evaluation of selenium-enriched microalgae produced on domestic wastewater as biostimulant, and biofertilizer for growth of selenium-enriched crops. Journal of Applied Phycology, 33, 3027-3039. https://doi.org/10.1007/s10811-021-02523-y.

(XIX) Malavolta, E., Vitti, G.C., Oliveira, A.S., 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. 2nd ed. Piracicaba: Potafós.

(XX) Mazzoni-Viveiros, S.C., Trufem, S.F., 2004. Efeitos da poluição aérea e edáfica no sistema radicular de Tibouchina pulchra Cogn. (Melastomataceae) em área de mata Atlântica: associações micorrízicas e morfologia. Brazilian Journal of Botany, 27, 337-348. https://doi.org/10.1590/S0100-84042004000200013.

(XXI) Nascimento, I.B., Farias, C.H.A., Silva, M.C.C., Medeiros, J.F.D., Espínola Sobrinho, J., Negreiros, M.Z.D., 2002. Estimativa da área foliar do meloeiro. Horticultura Brasileira, 20, 555-558. https://doi.org/10.1590/S0102-05362002000400009.

(XXII) Natarajan, L., Jenifer, M.A., Chandrasekaran, N., Suraishkumar, G.K., Mukherjee, A., 2022. Polystyrene nanoplastics diminish the toxic effects of Nano-TiO2 in marine algae Chlorella sp. Environmental Research, 204 (Pt D): 112400. https://doi.org/10.1016/j.envres.2021.112400.

(XXIII) Navroski M.C., Machado, A.M., Oliveira, P.M., Sidnei, F.C., 2016. Influência do polímero hidroretentor nas características do substrato comercial para produção de mudas florestais. Interciencia, 41(5), 357-361.26. https://www.redalyc.org/articulo.oa?id=33945552012.

(XXIV) Neumann E.R., Resende, J.T.V., Camargo L.K.P., Chagas, R.R., Lima Filho, R.B., 2017. Produção de mudas de batata doce em ambiente protegido com aplicação de extrato de Ascophyllum nodosum. Horticultura brasileira, 35(4), 490-498. https://doi.org/10.1590/S0102-053620170404.

(XXV) Ozden, E., Light, M.E., Demir, I., 2021. Alternating temperatures increase germination, and emergence in relation to endogenous hormones, and enzyme activities in aubergine seeds. South African Journal of Botany, 139, 130-139. https://doi.org/10.1016/j.sajb.2021.02.015.

(XXVI) Pelloso, M.F., Farias, B.G.A.C., Paiva, A.S., 2020. Produção de mudas de meloeiro em substrato a base de ramas de mandioca submetido a diferentes períodos de compostagem. In Colloquium Agrariae. ISSN: 1809-8215, 16(1), 87-100. https://doi.org/10.5747/ca.2020.v16.n1.a351.

(XXVII) Pérez-Madruga, Y., López-Padrón, I., Reyes-Guerrero, Y., 2020. Las algas como alternativa natural para la producción de diferentes cultivos. Cultivos Tropicales, 41(2).38. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362020000200009

(XXVIII) Razaq, M., Zhang, P., Shen, H.L., Salahuddin. 2017. Influence of nitrogen, and phosphorous on the growth, and root morphology of Acer mono. PloS one, 12(2), e0171321. https://doi.org/10.1371/journal.pone.0171321.

(XXIX) Renaut, S., Masse, J., Norrie, J.P., Blal, B., Hijri, M., 2019. A commercial seaweed extract structured microbial communities associated with tomato, and pepper roots, and significantly increased crop yield. Microbial biotechnology, 12(6), 1346-1358. https://doi.org/10.1111/1751-7915.13473.

(XXX) Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., Tava, A., 2019. Microalgal biostimulants, and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192.

(XXXI) Ruiz-Sánchez, E., Chan-Escalante, Z.F., Ballina-Gómez, H.S., Fernández-Herrera, M.A., de Jesús Góngora-Gamboa, C., 2022. Effect of biostimulants on the growth, foliar characteristics, and population density of Bemisia tabaci in habanero pepper (Capsicum chinense Jacq.). Tropical, and Subtropical Agroecosystems, 25(1):1-7. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3757.

(XXXII) Salisbury, F.B., Ross, C.W., 2012. Fisiologia das plantas. São Paulo: Cengage Learning.

(XXXIII) Senhor, R.F., De Carvalho, J.N., De Souza, P.A., Andrade Neto, R.C., Maracajá, P.B., 2009. Eficiência de diferentes fungicidas no controle de Alternaria alternata, agente causal da podridão pós-colheita em frutos de meloeiro. Revista Caatinga, Mossoró, 22(3), 40-45. https://periodicos.ufersa.edu.br/caatinga/article/view/1181.

(XXXIV) Sharifi, M., 2018. Energy inputs-Yield relationship, and cost analysis of melon production in Khorasan Razavi province of Iran. Engineering in Agriculture, Environment, and Food, 11(3), 109-113. https://doi.org/10.1016/j.eaef.2018.02.002.

(XXXV) Stirk, W.A., Bálint, P., Tarkowská, D., Novak, O., Maróti, G., Ljung, K., Turečková, V., Strnad, M., Ördög, V., Van Staden, J., 2014. Effect of light on growth, and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology, and Biochemistry, 79, 66-76. https://doi.org/10.1016/j.plaphy.2014.03.005.

(XXXVI) Taiz, L., Zeiger, E., 2013. Fisiologia vegetal. 5th ed. Porto Alegre: Artmed.

(XXXVII) Taiz, L., Zeiger, E., Moller, IM, Murphy, A., 2017. Fisiologia e Desenvolvimento Vegetal, sexta ed. Sinauer Associates, Sunderland.

(XXXVIII) Tang, D.Y.Y., Khoo, K.S., Chew, K.W., Tao, Y., Ho, S.H., Show, P.L., 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304, 122997. https://doi.org/10.1016/j.biortech.2020.122997.

(XXXIX) Vendruscolo, E.P., Seleguini, A., Cardoso-Campos, L.F.C., Alcântara-Rodrigues, A.H., Lima, S.F.D., 2018. Desenvolvimento e produção de melão ‘Cantaloupe’ em função do espaçamento e ambientes de cultivo no Cerrado brasileiro. Revista Colombiana de Ciencias Hortícolas, 12(2), 397-404. https://doi.org/10.17584/rcch.2018vl2i2.7794.

(XL) Vendruscolo, E.P., Araujo, L.V., Semensato, L.R., Campos, L.F.C., de Oliveira, P.R., Seleguini, A., 2019. Brazilian Journal of Animal, and Environmental Research, 2(4), 1201-1211. https://ojs.brazilianjournals.com.br/ojs/index.php/BJAER/article/view/2577.

(XLI) Xu, L., Geelen, D., 2018. Developing biostimulants from agro-food, and industrial by-products. Frontiers in plant science, 9, 416258. https://doi.org/10.3389/fpls.2018.01567.

(XLII) Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., Brown, P., 2017. Biostimulants in plant science: a global perspective. Frontiers in plant science, 7, 238366. https://doi.org/10.3389/fpls.2016.02049.

Downloads

Published

2025-03-31

How to Cite

Nunes Ferreira, A. P., Pinheiro Lopes, K., Carlos Rocha Araújo, R. H., de Lima, J. F., Lopes Araújo, J., Forte de Oliveira, A. M., … Oliveira da Silva Marcelino, R. M. (2025). DEVELOPMENT AND QUALITY OF ‘CANTALOUPE’ MELON SEEDLINGS UNDER THE INFLUENCE OF Chlorella SP. VIA ROOT. REVISTA DE AGRICULTURA NEOTROPICAL, 12(1). https://doi.org/10.32404/rean.v12i1.8931