YIELD AND QUALITY OF BELL PEPPER FRUITS IRRIGATED WITH MAGNETICALLY TREATED WATER
Visualizações: 648DOI:
https://doi.org/10.32404/rean.v8i3.6153Abstract
The application of magnetically treated water is a valuable technique for crop irrigation to enhance the yield and quality of agricultural products. This study aims to evaluate the effect of irrigation water depths and the application of water with and without magnetic treatment on the yield and quality of bell pepper fruits in a controlled environment, verifying the effect of magnetically treated water on soil water retention. Two experiments were conducted in the Irrigation Technical Center of the Universidade Estadual de Maringá, Maringá/PR; the first on Summer 2017-2018, and the second on Winter-Spring 2018. A randomized block design with a factorial scheme 3 x 2 with four repetitions was used for the first experiment and a 2 x 2 scheme with six repetitions for the second. The first factor was the water replacement levels (based on the crop evapotranspiration), and the second the irrigation water treatment, with or without magnetic treatment. The yield and number of fruits were determined after six and four harvests in the first and second experiments. Quality characteristics (soluble solids level, pH, and titratable acidity) were evaluated from three fruits of each plant. The data was submitted to the Tukey test (p ≤ 0.05). It was verified that the application of magnetically treated water did not influence yield. However, it increased the levels of soluble solids and pH. To evaluate the effect of applying magnetically treated water on soil retention, 12 pots filled with soil and without plants were used. An increase in the gravimetric soil moisture using magnetically treated water was perceived, demonstrating higher water retention when using the irrigation method.References
(I) Aguilera, J.G., Martín, R.M. 2016. Água tratada magneticamente estimula a germinação e desenvolvimento de mudas de Solanum lycopersicum L. Revista Brasileira de Agropecuária Sustentável, 6(1), 47-53. DOI: https://doi.org/10.21206/rbas.v6i1.320.
(II) Ahmed, M.E., El-Kader, N.I. 2016. The influence of magnetic water and water regimes on soil salinity, growth, yield and tubers quality of potato plants. Middle East Journal of Agriculture, 5(2), 132-143. https://www.researchgate.net/publication/301548419_The_Influence_of_Magnetic_Water_and_Water_Regimes_on_Soil_Salinity_Growth_Yield_and_Tubers_Quality_of_Potato_Plants. (accessed March 7, 2021)
(III) Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Rome, FAO.
(IV) Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2013. Köppen’s climate classifcation map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507.
(V) EMBRAPA. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, 2013. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos, terceira ed. Rio de Janeiro, Embrapa, 353p.
(VI) FAO. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. 2019. FAOSTAT – Chillies and peppers, green. http://www.fao.org/faostat/en/#data/QC. (accessed June 18, 2021)
(VII) Ferreira, D.F., 2019. SISVAR:a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450
(VIII) Filgueira, F.A.R., 2012. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças, terceira ed. Editora UFV, Viçosa.
(IX) Filgueira, F.A.R. 2003. Solanáceas: agrotecnologia moderna na produção de tomate, batata, pimentão, pimenta, berinjela e jiló. UFLA, Lavras.
(X) Frizzone, J.A., Freitas, P.S.L., Rezende, R., Faria, M.A., 2012. Microirrigação: gotejamento e microaspersão. Eduem , Maringá.
(XI) Fontes, P.C.R., Dias, E.N., Graça, R.N. 2005. Acúmulo de nutrientes e método para estimar doses de nitrogênio e potássio na fertirrigação do pimentão. Horticultura Brasileira, 23(2), 275-280. DOI: https://doi.org/10.1590/S0102-05362005000200022
(XII) Generoso, T. N., Martinez, M.A., Rocha, G.C., Hamakawa, P.J. 2017. Water magnetization and phosphorus transport parameters in the soil. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(1), 9-13. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n1p9-13.
(XIII) Gould, W.A. 1974. Tomato production, processing and quality evaluation, first ed. The AVI, Westport.
(XIV) IAL. INSTITUTO ADOLFO LUTZ. 2008. Métodos físico-químicos para análises de alimentos. Zenebon, O., Pascuet, N.S., Tigela, P. (orgs), quarta ed, Instituto Adolfo Lutz, São Paulo.
(XV) Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi, S.F., Kiani, A.R. 2011. Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use and Management, 27(4), 515-522. DOI: https://doi.org/10.1111/j.1475-2743.2011.00358.x.
(XVI) Lopes, S.M., Alcantra, E., Rezende, R.M., Freitas, A.S. 2018. Avaliação de frutos de pimentão submetidos ao ensacamento no cultivo orgânico. Revista da Universidade Vale do Rio Verde, 16(1), 1-11. DOI: https://doi.org/10.5892/ruvrd.v16i1.4922.
(XVII) Lorenzoni, M.Z., Rezende, R., Souza, A.H.C., Seron, C.C., Gonçalves, A.C.A., Saath, R. 2020. Growth and development of bell pepper crop irrigated with magnetically-treated water. Revista de Agricultura Neotropical, 7(2), 9-16. DOI: https://doi.org/10.32404/rean.v7i2.4173.
(XVIII) Lorenzoni, M.Z., Rezende, R., Souza, A.H.C., Seron, C.C., Hachmann, T.L., Freitas, P.S.L., 2016. Response od bell pepper crop fertigated with nitrogen and potassium doses in protected environment. Agrotechnology, 5(3), 148-152. DOI: https://doi.org/10.4172/2168-9881.1000148.
(XIX) Maheshwari, B.L., Grewal, H.S., 2009. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96, 1229-1236. DOI: https://doi.org/10.1016/j.agwat.2009.03.016.
(XX) Mostafazadeh-Fard, B., Khoshravesh, M., Mousavi, S.F., Kiani, A.R. 2011. Effects of magnetized water and irrigation water salinity on soil moisture distribution in trickle irrigation. Journal of irrigation and drainage engineering, 137(6), 398-402. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000304.
(XXI) Ospina-Salazar, D.I., Benavides-Bolaños, J.A., Zúñiga-Escobar, O., Muñoz-Perea, C.G., 2018. Photosynthesis and biomass yield in Tabasco pepper, radish and maize subjected to magnetically treated water. Corpoica Ciencia Tecnologia Agropecuaria, 19(2), 307-321. DOI: https://doi.org/10.21930/rcta.vol19_num2_art:537.
(XXII) Putti, F.F., Gabriel Filho, L.R.A., Klar, A.E., Cremasco, C.P., Ludwig, R., Silva Junior, J.F., 2013. Desenvolvimento inicial da alface (Lactuca sativa L.) irrigada com água magnetizada. Cultivando o saber, 6(3), 83-90. https://www.fag.edu.br/upload/revista/cultivando_o_saber/526e65821f322.pdf
(XXIII) Sayed, H.E.S.A.E., 2014. Impact of magnetic water irrigation for improve the growth, chemical composition and yield production of Broad Bean (Vicia faba L.) plant. American Journal of Experimental Agriculture, 4(4), 476-496. DOI: https://doi.org/10.9734/AJEA/2014/7468.
(XXIV) Seron, C.C., Rezende, R., Lorenzoni, M.Z., Souza, A.H.C., Gonçalves, A.C.A., Saath, R. 2019. Irrigation with water deficit applying magnetic water on scarlet eggplant. Revista de Agricultura Neotropical, 6(4), 1-9. DOI: https://doi.org/10.32404/rean.v6i4.3809.
(XXV) Souza, A.H.C., Rezende, R., Seron, C.C., Lorenzoni, M.Z., Nascimento, J.M.R., Lozano, C.S., Nalin, D., Terassi, D.S., Gonçalves, A.C.A., Saath, R., Freitas, P.S.L., 2019. Evaluation of the growth and the yield of Eggplant crop under different irrigation depths and magnetic treatment of water. Journal of Agricultural Science, 11(17), 35-43. DOI: https://doi.org/10.5539/jas.v11n17p35.
(XXVI) Surendran, U., Sandeep, O., Joseph, E.J., 2016. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Manegement, 178, 21-29. DOI: https://doi.org/10.1016/j.agwat.2016.08.016.
(XXVII) Trani, P.E., 2014. Calagem e adubação para hortaliças sob cultivo protegido. (Nota técnica) Instituto Agronômico de Campinas, Centro de Horticultura, São Paulo. https://www.codeagro.agricultura.sp.gov.br/arquivos/hortalimento/Calagem_e_adubacao_para_hortalicas_201588bf89e2deb32d9ac52a0ac416664009.pdf. (acessado 14 de março de 2021)
Downloads
Published
How to Cite
Issue
Section
License
The authors retain the rights to the manuscripts and, therefore, are free to share, copy, distribute, perform and publicly communicate the work under the following conditions:
Acknowledge work credits in the manner specified by the author or licensor (but not in a way that suggests that you have their support or that they support their use of their work).
REVISTA DE AGRICULTURA NEOTROPICAL (ISSN 2358-6303) is under license https://creativecommons.org/licenses/by/4.0/
The State University of Mato Grosso do Sul, Sustainable Development Center of Bolsão Sul-Mato-grossense (CEDESU), of the University Unit of Cassilândia (UUC), preserves the patrimonial rights (copyright) of the published works and favors and allows their reuse under the license as mentioned above.
------------
The journal reserves the right to make normative, orthographic, and grammatical alterations in the originals, to maintain the cult standard of the language, respecting, however, the style of the authors.
Final proofs will be sent to the authors.
Published works become the property of the journal. The opinions expressed by the authors of the manuscripts are their sole responsibility.