INFLUENCE OF THE FORM OF HARVESTING AND WASTE APPLICATION ON THE CARBON MANAGEMENT INDEX AND SOIL AGGREGATION UNDER SUGARCANE CULTIVATION
Visualizações: 275DOI:
https://doi.org/10.32404/rean.v8i4.6744Palavras-chave:
Environmental assessment, Waste application, Soil structureResumo
Waste application from the sugar-alcohol industry in the soil is a viable alternative from the point of view of the disposal of these residues, in addition to fertilizing the soil with nutrients. The aim of this study was to evaluate the physical fractions of soil organic matter (SOM), carbon management indexes (CMI) and the aggregation of a Red Latosol of clayey texture in areas of sugarcane cultivation managed differently regarding harvest and waste application. Five sugarcane cultivated areas were evaluated, differing in the management of harvest (raw and burned) and application or not of vinasse and/or filter cake, in addition to a reference area of native forest (NF) of Cerrado vegetation. Disturbed soil samples were collected in the layers 0-0.05; 0.05-0.1 and 0.1-0.2 m, and undisturbed samples were collected in the layer 0-0.1. In the disturbed samples, total carbon (TC), physical-granulometric fractionation of SOM were determined with subsequent CMI calculations. Aggregation analysis was performed in the undisturbed samples, and the weighted mean diameter (WMD), geometric mean diameter (GMD) and percentage of aggregates retained in the different sieve classes were determined, in addition to determining the TC contents of each aggregate class. The NF presented the highest levels of TC, particulate carbon (C-POM) and mineral (C-MOM). Among the managed areas, the area that received filter cake and vinasse application stood out with higher levels of TC, C-POM and C-MOM in the most subsurface layer. All areas cultivated with sugarcane presented CMI lower than the area of NF. The worst aggregation indexes were observed in the area with management with burning in the pre-harvest and application of only filter cake, and the best aggregation indexes were in the NF. There was a significant correlation between the aggregation indexes and soil TC contents. The area with the practice of burning, but with joint application of filter cake and vinasse for 16 consecutive years provided greater aggregation of soil and better CMI among the areas cultivated with sugarcane.
Referências
(I) Assunção, S.A., Pereira, M.G., Rosset, J.S., Berbara, R.L.L., García, A.C. 2019. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Science of the Total Environment, 658, 901-911. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.271
(II) Balesdent, J., Chenu C., Balabane M. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research, 53(3), 215-230. DOI: https://doi.org/10.1016/S0167-1987(99)00107-5.
(III) Barbosa, E.A.A., Matsura, E.E., Santos, L.N.S., Nazário, A.A., Gonçalves, I.Z., Feitosa, D.R. C. 2018. Soil attributes and quality under treated domestic sewage irrigation in sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(2), 137-142. DOI: https://doi.org/10.1590/1807-1929/agriambi.v22n2p137-142.
(IV) Benbi, D.K., Brar, K., Toor, A.S., Singh, P. 2015. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma, 237, 149-158. DOI: https://doi.org/10.1016/j.geoderma.2014.09.002.
(V) Bilgili, A.V., Aydemir, S. Altun, O., Sayğan, E.P., Yalçin, H., Schindelbeck, R. 2019. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma, 345, 123-133. DOI: https://doi.org/10.1016/j.geoderma.2019.03.010.
(VI) Blair, G.J., Lefroy, R.D.B., Lisle, L. 1995. Soil carbon fractions, based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal Agricultural Research, 46, 1459-1466. DOI: https://doi.org/10.1071/AR9951459.
(VII) Blair, N. 2000 Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia. Soil & Tillage Research, 55(1), 183-191. DOI: https://doi.org/10.1016/S0167-1987(00)00113-6.
(VIII) Bordonal, R.O., Carvalho, J.L.N., Lal, R., Figueiredo, E.B., Oliveira, B.G., La Scala, N. 2018. Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, 38(2), 1-23. DOI: https://doi.org/10.1007/s13593-018-0490-x.a
(IX) Bordonal, R.O., Menandro, L.M.S., Barbosa, L.C., Lal, R., Milori, D.M.B.P., Kolln, O.T., Franco, H.C.J., Carvalho, J.L.N. 2018. Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, 328, 79-90. DOI: https://doi.org/10.1016/j.geoderma.2018.05.003.b
(X) Camargo, F.P., Fredo, C.E., Bueno, C.R.F., Baptistella, C.S.L., Caser, D.V., Angelo, J.A. Coelho, P.J. Martins, V.A. 2019. Previsões e Estimativas das Safras Agrícolas do Estado de São Paulo, Intenção de Plantio do Ano Agrícola 2019/20 e Levantamento Final do Ano Agrícola 2018/19, Setembro de 2019. Análises e Indicadores do Agronegócio. São Paulo, 14(10). 1-11. http://www.iea.sp.gov.br/out/TerTexto.php?codTexto=14720. (acessado 29 de abril. de 2021).
(XI) Cambardella, C.A., Elliott, E.T. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56(3), 777-783. DOI: https://doi.org/10.2136/sssaj1992.03615995005600030017x.
(XII) Campos, M.C.C., Soares, M.D.R., Nascimento, M.F., Silva, D.M.P. 2016. Estoque de carbono no solo e agregados em Cambissolo sob diferentes manejos no sul do Amazonas. Revista Ambiente & Água, 11(2), 339-349. DOI: https://doi.org/10.4136/ambi-agua.1819.
(XIII) Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50(3), 627-633. DOI: https://doi.org/10.2136/sssaj1986.03615995005000030017x.
(XIV) Falcão, K.S., Monteiro, F.N., Ozório, J.M.B., Souza, C.B.S., Farias, P.G.S., Menezes, R.S., Panachuki, E., Rosset, J.S. 2020. Estoque de carbono e agregação do solo sob diferentes sistemas de uso no Cerrado. Revista Brasileira de Ciências Ambientais (Online), 55(2), 242-255. DOI: https://doi.org/10.5327/Z2176-947820200695.
(XV) Franchini, L.H.M., Constantin, J., Mendes, R.R., Oliveira Junior, R.S., Biffe, D.F., Rios, F. A., Matte, W.D. 2020. Seletividade de herbicidas aplicados em pré e pós-emergência da cana-de-açúcar com e sem queima. Brazilian Journal of Development, 6(6), 33666-33685.
(XVI) Fravet, P.R.F., Soares, R.A.B., Lana, R.M.Q., Lana, Â.M.Q., Korndörfer, G.H. 2010. Efeito de doses de torta de filtro e modo de aplicação sobre a produtividade e qualidade tecnológica da soqueira de cana-de-açúcar. Ciência e Agrotecnologia, 34(3), 618-624. DOI: https://doi.org/10.1590/S1413-70542010000300013.
(XVII) Freitas, L., Oliveira, I.A., Casagrande, J.C., Silva, L.S., Campos, M.C.C. 2018. Estoque de carbono de Latossolos em sistemas de manejo natural e alterado. Ciência Florestal, 28(1), 228-239. DOI: https://doi.org/10.5902/1980509831575.
(XVIII) Ghosh, B.N., Meena, V.S., Singh, R.J., Alam, N.M., Patra, S., Bhattacharyya, R., Sharma, N.K., Dadhwal, K.S., Mishra, P.K. 2018. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas. Ecological Indicators, 105, 415-424. DOI: https://doi.org/10.1016/j.ecolind.2018.02.050.
(XIX) Gomes, T.F., Van de Broek, M., Govers, G., Silva, R.W., Moraes, J.M., Camargo, P.B., Mazzi, E.A., Martinelli, L.A. 2019. Runoff, soil loss, and sources of particulate organic carbon delivered to streams by sugarcane and riparian areas: An isotopic approach. Catena, 181, 104083. DOI: https://doi.org/10.1016/j.catena.2019.104083.
(XX) IUSS Working Group WRB. 2015. World Reference Base for Soil Resources (WRB), sistema universal reconhecido pela International Union of Soil Science (IUSS) e FAO. http://www.fao.org/3/a-i3794e.pdf. (accessed January 13, 2022)
(XXI) Jha, P., Verma, S., Lal, R., Eidson, C., Dheri, G.S. 2017. Natural 13C abundance and soil carbon dynamics under long‐term residue retention in a no‐till maize system. Soil Use and Management, 33(1), 90-97. DOI: https://doi.org/10.1111/sum.12323.
(XXII) Kemper, W.D., Rosenau, R.C. 1986. Aggregate stability and size distribution. In: Klunte, A. ed. Methods of soil analysis. Parte 1: physical and mineralogical methods. Kimberley: American Society of Agronomy, 425-443.
(XXIII) Kemper, W.D., Chepil, W.S. 1965. Size distribution of aggregates. In: Black, C.A. Methods of soil analysis. Madison, American Society of Agronomy, p. 449-510.
(XXIV) Kiehl, E.J. 1979. Manual de edafologia: Relações solo-planta. São Paulo-SP: Agronômica Ceres, 263 p.
(XXV) Lal, R. 2018. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24(8), 3285-3301. DOI: https://doi.org/10.1111/gcb.14054.
(XXVI) Martins, L.F.B.N., Troian, D., Rosset, J.S., Ozório, J.M.B., Marra, L.M., Castilho, S.C.P. 2020. Soil carbon stock in different uses in the southern cone of Mato Grosso do Sul. Journal Of Neotropical Agriculture, 7(4), 86-94. DOI: https://doi.org/10.32404/rean.v7i4.5351.
(XXVII) Melo, T.R., Pereira, M.G., Barbosa, G.M.C., Silva Neto, E.C., Andrello, A.C., Tavares Filho, J. 2019. Biogenic aggregation intensifies soil improvement caused by manures. Soil and Tillage Research, 190, 186-193. DOI: https://doi.org/10.1016/j.still.2018.12.017.
(XXVIII) Nunes, M.R., Pauletto, E.A., Denardin, J.E., Suzuki, L.E., Van Es, H.M. 2019. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil And Tillage Research, 186, 183-190. DOI: https://doi.org/10.1016/j.still.2018.10.017.
(XXIX) Olaya, A.M.S., Cerri, C.E., Williams, S., Cerri, C.C., Davies, C.A., Paustian, K. 2017. Modelling SOC response to land use change and management practices in sugarcane cultivation in South-Central Brazil. Plant and Soil, 410(1-2), 483-498. DOI: https://doi.org/10.1007/s11104-016-3030-y.
(XXX) Oliveira, D.M., Costa, A.R., Silva, P.C., Calixto, L.V., Taveira, J.H.S. 2019. Carbono das frações oxidáveis do solo sob cultivos de cana-de-açúcar de diferentes números de colheita. Acta Iguazu, 8(2), 124-133. DOI: https://doi.org/10.48075/actaiguaz.v8i2.17438.
(XXXI) Oliveira, V.S., Rolim, M.M., Vasconcelos, R.F.B., Pedrosa, E.M.R. 2010. Distribuição de agregados e carbono orgânico em um Argissolo Amarelo distrocoeso em diferentes manejos. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(9), 07-913. DOI: https://doi.org/10.1590/S1415-4366201000090
(XXXII) Ozório, J.M.B., Rosset, J.S., Schiavo, J.A., Panachuki, E., Souza, C.B.S., Menezes, R.S., Ximenes, T.S., Castilho, S.C.P., Marra, L.M. 2019. Estoque de carbono e agregação do solo sob fragmentos florestais nos biomas mata atlântica e cerrado. Revista Brasileira de Ciências Ambientais, 53, 97-116. DOI: https://doi.org/10.5327/Z2176-947820190518.
(XXXIII) Ozório, J.M.B., Oliveira, N.S., Souza, C.B.S., Farias, P.G.S., Menezes, R.S., Rosset, J.S. 2020. Sistema edáfico: principais indicadores químicos, físicos e biológicos. Revista Ibero Americana de Ciências Ambientais, 11(7), 24-36. DOI: http://doi.org/10.6008/CBPC2179-6858.2020.007.0003.a
(XXXIV) Ozório, J.M.B., Rosset, J.S., Schiavo, J.A., Souza, C.B.D.S., Farias, P.G.D.S., Oliveira, N.D. S., Menezes, R.S., Panachuki, E. 2020. Physical fractions of organic matter and mineralizable soil carbon in forest fragments of the Atlantic Forest. Revista Ambiente & Água, 15(6). e2001 DOI: https://doi.org/10.4136/ambi-agua.2601.b
(XXXV) Ozório, J.M.B., Rosset, J.S., Schiavo, J.A., Souza, C.B.S., Farias, P.G.S., Menezes, R.S., Oliveira, N.S., Panachuki, E. 2020. Frações físicas da matéria orgânica e carbono mineralizável do solo em fragmentos florestais do bioma Cerrado. Revista Ibero Americana de Ciências Ambientais, 11(7), 48-63. DOI: https://doi.org/10.6008/CBPC2179-6858.2020.007.0005.c
(XXXVI) Patra, S., Julich, S., Feger, K.H., Jat, M.L., Jat, H., Sharma, P.C., Schwärzel, K. 2019. Soil hydraulic response to conservation agriculture under irrigated intensive cereal-based cropping systems in a semiarid climate. Soil and Tillage Research, 192, 151-163. DOI: https://doi.org/10.1016/j.still.2019.05.003.
(XXXVII) Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. 2007. Updated world map of the KöppenGeiger climate classification. Hydrology and Earth System Sciences, 11, 1633-1644. DOI: https://doi.org/10.5194/hess-11-1633-2007.
(XXXVIII) Projeto MapBiomas. 2021. Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/?cama_set_language=pt-BR (acessado 25 de janeiro de 2021).
(XXXIX) Resende, M., Curi, N., Resende, S.B., Corrêa, G.F. 1997. Pedologia: base para distinção de ambientes: UFV, 367 p.
(XL) Rossi, C.Q., Pereira, M.G., Giácomo, S.G., Betta, M., Polidoro, J.C. 2012. Frações lábeis da matéria orgânica em sistema de cultivo com palha de braquiária e sorgo. Revista Ciência Agronômica, 43(1), 38-46. DOI: https://doi.org/10.1590/S1806-66902012000100005.
(XLI) Rosset, J.S., Lana, M.C., Pereira, M.G., Schiavo, J.A., Rampim, L., Sarto, M.V.M. 2019. Organic matter and soil aggregation in agricultural systems with different adoption times. Semina: Ciências Agrárias, 40(6), suplemento 3, 3443-3460. DOI:10.5433/1679-0359.2019v40n6Supl3p3443.
(XLII) Rosset, J.S., Schiavo, J.A., Atanázio, R.A.R. 2014. Atributos químicos, estoque de carbono orgânico total e das frações humificadas da matéria orgânica do solo em diferentes sistemas de manejo de cana-de-açúcar. Semina: Ciências Agrárias, 35(5), 2351-2366. DOI: 10.5433/1679-0359.2014v35n5p2351.
(XLIII) Sales, A.; Silva, A.R.; Veloso, C.A.C.; Carvalho, E.J.M.; Miranda, B.M. 2018. Carbono orgânico e atributos físicos do solo sob manejo agropecuário sustentável na Amazônia legal. Colloquium Agrariae, 14(1), 1-15. DOI: 10.5747/ca.2018.v14.n1.a185.
(XLIV) Salton, J.C., Mielniczuk, J., Bayer, C., Boeni, M., Conceição, P.C., Fabrício, A.C., Macedo, M.C.M., Broch, D.L. 2008. Agregação e estabilidade de agregados do solo em sistemas agropecuários em Mato Grosso do Sul. Revista Brasileira de Ciência do Solo, 32(1), 11-21. DOI: https://doi.org/10.1590/S0100-06832008000100002.
(XLV) Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M. R., Almeida, J.A., Araújo Filho, J.C., Oliveira, J.B., Cunha, T.J.F. 2018. Sistema Brasileiro de Classificação de Solos. 5.ed. Embrapa Solos, Brasília. 356p.
(XLVI) Satiro, L.S., Cherubin, M.R., Safanelli, J.L., Lisboa, I.P., Rocha Junior, P.R., Cerri, C.E.P., Cerri, C.C. 2017. Sugarcane straw removal effects on Ultisols and Oxisols in south-central Brazil. Geoderma Regional, 11, 86-95. DOI: https://doi.org/10.1016/j.geodrs.2017.10.005.
(XLVII) Schiavo, J.A., Colodro, G. 2012. Agregação e resistência à penetração de um Latossolo Vermelho sob sistema de integração lavoura-pecuária. Bragantia, 71(3), 406-412. DOI: https://doi.org/10.1590/S0006-87052012005000035.
(XLVIII) SEMADE. SECRETARIA DE ESTADO DE MEIO AMBIENTE E DESENVOLVIMENTO ECONÔMICO. 2015. Diagnóstico Socioeconômico de Mato Grosso do Sul - 2015. Governo do Estado, Campo Grande.
(XLIX) Signor, D., Czycza, R.V., Milori, D.M.B.P., Cunha, T.J.F., Cerri, C.E.P. 2016. Atributos químicos e qualidade da matéria orgânica do solo em sistemas de colheita de cana-de-açúcar com e sem queima. Pesquisa Agropecuária Brasileira, 51(9), 1438-1448. DOI: https://doi.org/10.1590/S0100-204X2016000900042.
(L) Signor, D., Zani, C.F., Paladini, A.A., Deon, M.D.I., Cerri, C.E.P. 2014. Estoques de carbono e qualidade da matéria orgânica do solo em áreas cultivadas com cana-de-açúcar. Revista Brasileira de Ciência do Solo, 38(5), 1402-1410.
(LI) Sithole, N.J., Magwaza, L.S., Thibaud, G.R. 2019. Long-term impact of no-till conservation agriculture and N-fertilizer on soil aggregate stability, infiltration and distribution of C in different size fractions. Soil and Tillage Research, 190, 147-156. DOI: https://doi.org/10.1016/j.still.2019.03.004.
(LII) Six, J., Elliott, E.T., Paustian, K., Combrink, C. 2000. Soil structure and organic matter. I. Distribution of aggregate size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64(3), 681-689. DOI: https://doi.org/10.2136/sssaj2000.642681x.
(LIII) Six, J., Feller, C., Denef, K., Ogle, S.M., As, J.C.M., Albrecht, A. 2002. Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. Agronomie, 22, 755-775. DOI: https://dx.doi.org/10.1051/
agro:2002043.
(LIV) Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC, 681p.
(LV) Souza, L.C., Fernandes, C., Moitinho, M.R., Bicalho, E.S., La Scala Jr, N. 2018. Soil carbon dioxide emission associated with soil porosity after sugarcane field reform. Mitigation and Adaptation Strategies for Global Change, 24(113), 1-15. DOI: https://doi.org/10.1007/s11027-018-9800-5.
(LVI) Souza, R.P.B., Freitas, M.A.M., Costa, M.P., Pereira, L.F., Gomes, J.V.A. 2017. Impact of anthropic action on physical attributes of the soil in different physiology of Cerrado. Multi-Science Journal, 1(9), 28-32.
(LVII) Takeshita, V., Mendes, K.F., Bompadre, T.F.V., Alonso, F.G., Pimpinato, R.F., Tornisielo, V. L. 2020. Aminocyclopyrachlor sorption–desorption and leaching in soil amended with organic materials from sugar cane cultivation. Weed Research, 60(5), 363-373. DOI: https://doi.org/10.1111/wre.12442.
(LVIII) Tisdall, J.M.; Oades, J.M. 1982. Organic matter and water-stable aggregates. Journal of Soil Science, 33(2), 141-163. DOI: https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.
(LVIX) Torn M.S., Trumbore S.E., Chadwick O.A., Vitousek P.M., Hendricks D.M. 1997. Mineral control of soil organic carbon storage and turnover, Nature, 389(6647), 170-173. DOI: https://doi.org/10.1038/38260.
(LX) Troian, D., Rosset, J.S., Martins, L.F.B.N.; Ozório, J.M.B., Castilho, S.C.P., Marra, L.M. 2020. Carbono orgânico e estoque de carbono do solo em diferentes sistemas de manejo. Revista em Agronegócios e Meio Ambiente, 13(4), 1447-1469. DOI: https://doi.org/10.17765/2176-9168.2020v13n4p1447-1469.
(LXI) Vasconcelos, R.F., Souza, E.R.D., Cantalice, J.R., Silva, L.S. 2014. Qualidade física de Latossolo Amarelo de tabuleiros costeiros em diferentes sistemas de manejo da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(4), 381-386. DOI: https://doi.org/10.1590/S1415-43662014000400004
(LXII) Vicente, T.F.D.S., Pedrosa, E.M., Rolim, M.M., Oliveira, V.S., Oliveira, A.K.S., Souza, A.M. 2012. Relações de atributos do solo e estabilidade de agregados em canaviais com e sem vinhaça. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(11), 1215-1222.
Downloads
- pdf (English) 299
Publicado
Como Citar
Edição
Seção
Licença
Os autores mantêm os direitos dos artigos e, portanto, são livres para compartilhar, copiar, distribuir, executar e comunicar publicamente o trabalho sob as seguintes condições:
Reconheça os créditos do trabalho da maneira especificada pelo autor ou licenciante (mas não de uma maneira que sugira que você tenha o apoio deles ou que eles apoiem o uso do trabalho deles).
JOURNAL OF NEOTROPICAL AGRICULTURE - Revista de Agricultura Neotropical (ISSN 2358-6303) está sob licença https://creativecommons.org/licenses/by/4.0/
A Universidade Estadual de Mato Grosso do Sul, Centro de Desenvolvimento Sustentável do Bolsão Sul-Mato-grossense (CEDESU), da Unidade Universitária de Cassilândia (UUC) conserva os direitos patrimoniais (direitos autorais) das obras publicadas e favorece e permite a sua reutilização sob a licença supracitada.
------------
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A provas finais serão enviadas aos autores.
Os trabalhos publicados passam a ser propriedade da revista. As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.