Incidência de fungos de armazenamento em função de nitrogênio em cobertura e variedades de milho

Visualizações: 204

Autores

DOI:

https://doi.org/10.32404/rean.v11i1.8207

Palavras-chave:

Aspergillus flavus, Penicillium spp., Fusarium spp., Qualidade de grãos, Zea mays L.

Resumo

O milho é o principal cereal cultivado no Brasil e é utilizado principalmente para alimentação animal e consumo alimentar de seus derivados. Em condições ambientais favoráveis, fungos toxigênicos como Fusarium, Aspergillus e Penicillium spp. poderiam produzir micotoxinas nos grãos de milho durante o crescimento da planta ou no armazenamento. O objetivo deste trabalho foi avaliar a incidência de fungos toxigênicos e sua relação com o peso de grãos de variedades de milho cultivadas sob alta e baixa adubação de nitrogênio. O primeiro fator consistiu de 11 variedades de polinização aberta e o segundo fator de duas doses de nitrogênio em cobertura (60 e 180 kg ha-1). Após a colheita das unidades experimentais, foram avaliadas as seguintes variáveis: massa de cem grãos (MCG) e incidência de A. flavus, Penicillium spp. e Fusarium spp. Houve diferenças (p<0,05) entre as variedades de milho para todas as variáveis avaliadas. Houve interação significativa entre variedades x nitrogênio para a porcentagem de sementes infectadas por A. flavus, Fusarium spp. e MCG. A incidência de fungos e o MCG do milho dependem da variedade e do nitrogênio de cobertura usado.

Biografia do Autor

Tays Batista da Silva, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil.

Paulo Carteri Coradi, Universidade Federal de Santa Maria, Campus Cachoeira do Sul

Federal University of Santa Maria, Campus Cachoeira do Sul, Cachoeira do Sul, Rio Grande do Sul, Brazil.

Marcela Silva Flores, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul,  Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil.

Maria Luiza Nunes Costa, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul,  Chapadão do Sul, Mato Grosso do Sil, Brazil.

Mariana Vale dos Santos, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil.

Bruno Fernando Bertequine, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil.

Larissa Pereira Ribeiro Teodoro, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul, Brazil.

Paulo Eduardo Teodoro, Federal University of Mato Grosso do Sul

Federal University of Mato Grosso do Sul, Campus of Chapadão do Sul, Chapadão do Sul, Mato Grosso do Sul,  Brazil.

Referências

(I) Barnett, H.L., Hunter, B.B. 1998. Illustrated genera of imperfect fungi. APS, St. Paul.

(II) Bhering, L.L. 2017. Rbio: a tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied and Biotechnology, 17, 187-190. DOI: https://doi.org/10.1590/1984-70332017v17n2s29

(III) BRAZIL. MINISTRY OF AGRICULTURE, LIVESTOCK AND SUPPLY. 2009. Rules for Seed Analysis. Brasília, Mapa/ACS.

(IV) Bueno, D.S., Lima, S.F., Blanco, M., Coradi, P.C. 2020. Management of nitrogen fertilization on agronomic and nutritional characteristics in second crop corn. Bioscience Journal, 36, 439-448. DOI: https://doi.org/10.14393/BJ-v36n2a2020-45166

(V) Cheng, Y., Zhao, J., Liu, Z.X., Huo, Z.J., Peng, L.I.U., Dong, S.T., Bin, Z. 2015. Modified fertilization management of summer maize (Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use. Journal of Integrative Agriculture, 14, 1644-1657. DOI: https://doi.org/10.1016/S2095-3119(14)60879-0

(VI) Feng, H., Sekaran, U., Wang, T., Kumar, S. 2021. On-farm assessment of cover cropping effects on soil C and N pools, enzyme activities, and microbial community structure. The Journal of Agricultural Science, 1, 1-11. DOI: https://doi.org/10.1017/S002185962100040X

(VII) Garbaba, C.A., Diriba, S., Ocho, F.L., Hensel, O. 2018. Potential for mycotoxin-producing fungal growth in various agro-ecological settings and maize storage systems in southwestern Ethiopia. Journal of Stored Products Research, 76, 22-29. DOI: https://doi.org/10.1016/j.jspr.2017.12.001.

(VIII) Guo, B., Li, D., Lin, S., Li, Y., Wang, S., Chao, L., Xu, R. 2019. Regulation of nitrogen availability results in changes in grain protein content and grain storage subproteomes in barley (Hordeum vulgare L.). Plos One, 14, e0223831. DOI: https://doi.org/10.1371/journal.pone.0223831

(IX) Hamdi, N.B., Salem, I.B., M’hamdi, M. 2018. Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28, 1-12. DOI: https://doi.org/10.1186/s41938-017-0010-3

(X) Hammad, H.M., Abbas, F., Ahmad, A., Bakhat, H.F., Farhad, W., Wilkerson, C.J., Hoogenboom, G. 2020. Predicting kernel growth of maize under controlled water and nitrogen applications. International Journal of Plant Production, 14, 609-620. DOI: https://doi.org/10.1007/s42106-020-00110-8

(XI) Jiang, X., Cao, L., Zhang, R., Yan, L., Mao, Y., Yang, Y. 2014. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi. Applied Soil Ecology 80: 108-115. DOI: https://doi.org/10.1016/j.apsoil.2014.04.002

(XII) Khattak, A.R.A., Khalil, S.K. 2009. Plant density and nitrogen effects on maize phenology and grain yield. Journal of Plant Nutrition, 32, 246-260. DOI: https://doi.org/10.1080/01904160802592714

(XIII) Klich, M.A. 2022. Identification of Common Aspergillus species. The Netherlands: Central bureau vor Schimmelculture.

(XIV) Konca, T., Tunc, K. 2020. Investigation of total aflatoxin in corn and corn products in corn wet‐milling industry. Journal of Food Processing Preservation, 44, e14893. DOI: https://doi.org/10.1111/jfpp.14893

(XV) Krnjaja, V., Mandić, V., Bijelić, Z., Stanković, S., Obradović, A., Petrović, T., Radović, Č. 2021. Influence of nitrogen rates and Fusarium verticillioides infection on Fusarium sp. and fumonisin contamination of maize kernels. Crop Protection, 144, 105601. DOI: https://doi.org/10.1016/j.cropro.2021.105601

(XVI) Lange, A., Caione, G., Schoninger, E.L., Silva, R.G. 2014. Off-season corn yield intercropped with marandu grass as a function of nitrogen sources and doses in topdressing. Revista Brasileira de Milho e Sorgo, 13, 35-47. DOI: https://doi.org/10.18512/1980-6477/rbms.v13n1p35-47

(XVII) Li, Q., Du, L., Feng, D., Ren, Y., Li, Z., Kong, F., Yuan, J. 2020. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. The Crop Journal, 8, 990-1001.

(XVIII) Li, G.H., Cheng, G.G., Lu, W.P., Lu, D.L. 2021. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. Journal of Integrative Agriculture, 20(2), 554-564. DOI: https://doi.org/10.1016/S2095-3119(20)63315-9

(XIX) Macholdt, J., Gyldengren, J.G., Diamantopoulos, E., Styczen, M.E. 2020. How will future climate depending agronomic management impact the yield risk of wheat cropping systems? A regional case study of Eastern Denmark. The Journal of Agricultural Science, 158, 660-675. DOI: https://doi.org/10.1017/S0021859620001045.

(XX) Manoza, F.S., Mushongi, A.A., Harvey, J., Wainaina, J., Wanjuki, I., Ngeno, R., Darnell, R., Gnonlonfin, B.J., Massomo, S.M.S. 2017. Potential of using host plant resistence, nitrogen and phosphorus fertilizers for reduction of Aspergillus flavus colonization and aflatoxin ccumulation in maize in Tanzania. Crop Protection, 93, 98-105. DOI: https://doi.org/10.1016/j.cropro.2016.11.021

(XXI) Naldi, M.C., Campello, R.J., Hruschka, E.R., Carvalho, A.C.P.L.F. 2011. Efficiency issues of evolutionary k-means. Applied Soft Computing, 11(2), 1938-1952.

(XXII) Ohland, R.A.A., Souza, L.C.F., Hernani, L.C., Marchetti, M.E., Gonçalves, M.C. 2005. Cultivations of soil cover and nitrogen fertilization in corn under no-tillage. Ciência & Agrotecnologia, 29, 538-544. DOI: http://dx.doi.org/10.1590/S1413-70542005000300005.

(XXIII) Pena, G.A., Sulyok, M., Chulze, S.N. 2020. Effect of interacting conditions of water activity, temperature and incubation time on Fusarium thapsinum and Fusarium andiyazi growth and toxin production on sorghum grains. International Journal of Food Microbiology, 318, 108468. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108468

(XXIV) Qin, Y., Pan, X., Kubicek, C., Druzhinina, I., Chenthamara, K., Labbé, J.L., Yuan, Z. 2017. Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nitrogen-status dependent effects on plant growth. Frontiers in Microbiology, 8, 158. DOI: https://doi.org/10.3389/fmicb.2017.00158

(XXV) Sichocki, D., Gott, R.M., Fuga, C.A.G., Aquino, L.A., Ruas, R.A.A., Nunes, P.H.M.P. 2014. Response of off-season corn to doses of nitrogen and phosphorus. Revista Brasileira de Milho e Sorgo, 13, 48-58. DOI: https://doi.org/10.18512/1980-6477/rbms.v13n1p48-58

(XXVI) Tran, M.T., Ameye, M., Phan, L.T.K., Devlieghere, F., Saeger, S., Eeckhout, M., Audenaert, K. 2021. Impact of ethnic pre-harvest practices on the occurrence of Fusarium verticillioides and fumonisin B1 in maize fields from Vietnam. Food Control, 120, 107567. DOI: https://doi.org/10.1016/j.foodcont.2020.107567

(XXVII) Wang, X., Wang, G., Guo, T., Xing, Y., Mo, F., Wang, H., Zhang, F. 2021. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. European Journal of Soil Science, 72, 400-412. https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.12954

(XXVIII) Zhang, S.Q., Liang, Y., Wei, L.I., Lin, Z.A., Li, Y.T., Hu, S.W., Zhao, B.Q. 2019. Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen. Journal of Integrative Agriculture, 18, 656-666. DOI: https://doi.org/10.1016/S2095-3119(18)61950-1

(XXIX) Zhou, J., Wang, M., Sun, Y., Gu, Z., Wang, R., Saydin, A., Shen, Q., Guo, S. 2017. Nitrate increased cucumber tolerance to Fusarium wilt by regulating fungal toxin production and distribution. Toxins, 9, 100. DOI: https://doi.org/10.3390/toxins9030100

Downloads

Publicado

2024-01-25

Como Citar

Silva, T. B. da, Coradi, P. C., Flores, M. S., Costa, M. L. N., Santos, M. V. dos, Bertequine, B. F., … Teodoro, P. E. (2024). Incidência de fungos de armazenamento em função de nitrogênio em cobertura e variedades de milho. Revista De Agricultura Neotropical, 11(1), e8207. https://doi.org/10.32404/rean.v11i1.8207

Artigos mais lidos pelo mesmo(s) autor(es)