Crescimento e rendimento do espinafre brasileiro sob diferentes intensidades de sombreamento e períodos de colheita em um ecossistema urbano de planície tropical

Visualizações: 191

Autores

DOI:

https://doi.org/10.32404/rean.v11i2.8464

Palavras-chave:

Tempo de colheita, Folhas verdes, Hortaliças, Aclimatação da planta, Irradiação solar

Resumo

O espinafre brasileiro, uma hortaliça folhosa perene pouco conhecida, cresce em um ecossistema tropical. O estudo foi conduzido para avaliar o crescimento do espinafre brasileiro no ecossistema urbano de planície tropical sob diferentes níveis de intensidades de sombreamento e períodos de colheita. A pesquisa utilizou um desenho de parcela dividida, com diferentes níveis de intensidades de sombreamento (sem sombreamento, sombreamento de 45%, sombreamento de 55% e sombreamento de 80%) como parcela principal e períodos de colheita (a cada 2 semanas, a cada 3 semanas e a cada 4 semanas) como subparcela. Os resultados mostraram que o crescimento do espinafre brasileiro foi mais favorável quando exposto ao tratamento sem sombreamento em comparação com as condições de sombreamento. O tratamento com sombreamento, especialmente o sombreamento de 80%, teve um impacto negativo sobre o crescimento da planta observado durante os estágios iniciais de crescimento, conforme indicado pelas alterações nos parâmetros da copa (área da copa (26,47 cm2), diâmetro da copa (7,98 cm) e índice da copa (0,52)) e tendência dos valores SPAD. O sombreamento de 80% reduziu o alongamento dos ramos, a produção (comercializável (14,76 g) e não comercializável (4,68)), o peso seco do caule (0,25 g), o peso seco do ramo (0,40 g), o peso seco da folha (0,85 g) e o peso seco da raiz (0,44 g). Por outro lado, o espinafre brasileiro cultivado sem sombreamento aumentou o teor de carbono (34,64%) e reduziu o teor de nitrogênio (2,83%) das folhas comercializáveis. A colheita mais frequente (a cada 2 semanas) aumentou o rendimento comercializável (67,22 g), mas suprimiu o crescimento do caule (1,05 g), dos ramos (4,39 g) e da raiz (1,73 g). Portanto, recomenda-se cultivar o espinafre brasileiro em uma área não sombreada com uma rotina de colheita quinzenal.

Biografia do Autor

Strayker Muda, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Benyamin Lakitan, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Andi Wijaya, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Susilawati Susilawati, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Zaidan Zaidan, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Yakup Yakup, Universitas Sriwijaya

Universitas Sriwijaya, College of Agriculture, Indralaya, South Sumatra, Indonesia.

Referências

(I) Bessonova, V., Ponomaryova, E., Ivanchenko O., 2023. Changes in the morphometric and anatomical parameters of shoots and leaves of Acer platanoides L. after rejuvenation pruning. Ştiinţa Agricolă, 1(1), 25-34. DOI: https://doi.org/10.55505/SA.2023.1.03.

(II) Bollman, M.A., DeSantis, G.E., Waschmann, R.S., Mayer, P.M., 2021. Effects of shading and composition on green roof media temperature and moisture. Journal of environmental management, 281, e111882. DOI: https://doi.org/10.1016/j.jenvman.2020.111882.

(III) Cao, Y., Yang, K., Liu, W., Feng, G., Peng, Y., Li, Z., 2022. Adaptive responses of common and hybrid bermudagrasses to shade stress associated with changes in morphology, photosynthesis, and secondary metabolites. Frontiers in Plant Science, 13, e817105. DOI: https://doi.org/10.3389/fpls.2022.817105.

(IV) Castronuovo, D., Russo, D., Libonati, R., Faraone, I., Candido, V., Picuno, P., Andrade, P., Valentao, P., Milella, L., 2019. Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 254(12), 91-98. DOI: https://doi.org/10.1016/j.scienta.2019.04.077.

(V) Dheeraj, G., Bhagwan, A., Kiran-Kumar, A., Sreedhar, M., Saida, N., Veena J., 2022. Studies on the effect of stem tip pruning and bioregulators on flowering, fruit set and yield of mango (Mangifera indica L.) cv. Banganpalli under high density planting system. The Pharma Innovation Journal, 11(11), 1160-1169.

(VI) Fadilah, L.N., Lakitan, B., Marlina, M., 2022. Effects of shading on the growth of the purple pakchoy (Brassica rapa var. Chinensis) in the urban ecosystem. Agronomy Research, 20(1), 938–950. DOI: https://doi.org/10.15159/ar.22.057.

(VII) Farnisa, M.M., Miller, G.C., Solomon, J.K., Barrios-Masias, F.H., 2023. Floral hemp (Cannabis sativa L.) responses to nitrogen fertilization under field conditions in the high desert. Plos one, 18(5), e0284537. DOI: https://doi.org/10.1371/journal.pone.0284537.

(VIII) Fu, J., Luo, Y., Sun, P., Gao, J., Zhao, D., Yang, P., Hu, T., 2020. Effects of shade stress on turfgrasses morphophysiology and rhizosphere soil bacterial communities. BMC plant biology, 20(92), 1-16. DOI: https://doi.org/10.1186/s12870-020-2300-2.

(IX) Gao, J., Liu, Z., Zhao, B., Dong, S., Liu, P., Zhang, J., 2020. Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agronomy Journal, 112(4), 2768-2776. DOI: https://doi.org/10.1002/agj2.20140.

(X) Gomes, R.F., Arruda, R.D.S., Rosário, I.C.B.D., Andrade, F.L.D.N., Mello, M.N.D., Santos, L.D.S. 2023. Amazon chicory: growing at full sunlight or under shade?. Horticultura Brasileira, 41, e2554. DOI: https://doi.org/10.1590/s0102-0536-2023-e2554.

(XI) Huang, S.P., Kearley, R.E., Hung, K.W., Porter, W.P., 2020. Evaporative water loss simulation improves models’ prediction of habitat suitability for a high-elevation forest skink. Oecologia, 192(2), 657-669. DOI: https://doi.org/10.1007/s00442-020-04597-w.

(XII) Hussain, S., Liu, T., Iqbal, N., Brestic, M., Pang, T. Mumtaz, M., Shafiq, I., Li, S., Wang, L., Gao, Y., Khan, A., Ahmad, I., Allakhverdiev, S.I., Liu, W., Yang, W., 2020. Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochemical & Photobiological Sciences, 19(10), 462-472. https://link.springer.com/article/10.1039/c9pp00369j.

(XIII) Ikram, E.H.K., Nasir, W.D.N.W.M., Ikram, N.K.K., 2022. Antioxidant activity and total phenolics content of Brazilian spinach (Alternanthera sissoo) and spinach cultivar in Malaysia. Malaysian Journal of Medicine and Health Sciences, 18(8), 221-229.

(XIV) Jasinski, S., Fabrissin, I., Masson, A., Marmagne, A., Lécureuil, A., Laurence, B., Chardon, F., 2021. Accelerated cell death 6 acts on natural leaf senescence and nitrogen fluxes in Arabidopsis. Frontiers in Plant Science, 11, e611170. DOI: https://doi.org/10.3389/fpls.2020.611170.

(XV) Kesumawati, E., Apriyatna, D., Rahmawati, M., 2020. The effect of shading levels and varieties on the growth and yield of chili plants (Capsicum annuum L.). IOP Conference Series: Earth and Environmental Science. 425, e012080. DOI: https://doi.org/10.1088/1755-1315/425/1/012080.

(XVI) Khawam, G., Waller, P., Gao, S., Edmundson, S., Wigmosta, M.S., Ogden, K., 2019. Model of temperature, evaporation, and productivity in elevated experimental algae raceways and comparison with commercial raceways. Algal Research, 39, e101448. DOI: https://doi.org/10.1016/j.algal.2019.101448.

(XVII) Lakitan, B., Kartika, K., Susilawati, S., Wijaya, A., 2021a. Acclimating leaf celery plant (Apium graveolens) via bottom wet culture for increasing its adaptability to tropical riparian wetland ecosystem. Biodiversitas Journal of Biological Diversity, 22(1), 320-328. DOI: https://doi.org/10.13057/biodiv/d220139.

(XVIII) Lakitan, B., Kartika, K., Widuri, L.I., Siaga, E., Fadilah, L.N., 2021b. Lesser-known ethnic leafy vegetables Talinum paniculatum grown at tropical ecosystem: Morphological traits and non-destructive estimation of total leaf area per branch. Biodiversitas Journal of Biological Diversity, 22(10), 4487-4495. DOI: https://doi.org/10.13057/biodiv/d221042.

(XIX) Li, Y., Jeyaraj, A., Yu, H., Wang, Y., Ma, Q., Chen, X., Sun, H., Zhang, H, Ding, Z, Li, X., 2020. Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to shading. Journal of agricultural and food chemistry, 68(4), 961-974. DOI: https://doi.org/10.1021/acs.jafc.9b05858.

(XX) Liang, X.G., Gao, Z., Shen, S., Paul, M.J., Zhang, L., Zhao, X., Lin, S., Wu, G., Chen, X.M., Zhou, S.L., 2020. Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response. Journal of Plant Physiology, 251, e153194. DOI: https://doi.org/10.1016/j.jplph.2020.153194.

(XXI) Mendoza-Tafolla R.O., Juarez-Lopez, P., Ontiveros-Capurata, R.E., Sandoval-Villa, M., Alia-Tejacal, I., Alejo-Santiago, G., 2019. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 751-756. DOI: https://doi.org/10.15835/nbha47311525.

(XXII) Muda, S.A., Lakitan, B., Wijaya, A., Susilawati, S. 2022. Response of Brazilian spinach (Alternanthera sissoo) to propagation planting material and NPK fertilizer application. Pesquisa Agropecuária Tropical, 52, e72730. DOI: https://doi.org/10.1590/1983-40632022v5272730.

(XXIII) Oliveira, J.S., Brown, H.E., Moot, D.J., 2021. Assessing potato canopy growth and development at the individual leaf level to improve the understanding of the plant source–sink relations. New Zealand Journal of Crop and Horticultural Science, 49(4), 325-346. DOI: https://doi.org/10.1080/01140671.2021.1879878.

(XXIV) Purbajanti, E.D., Setyawati, S., Kristanto, B.A., 2019. Growth, Herbage Yield and Chemical Composition of Talinum Paniculatum (Jacq.). Indian Journal of Agricultural Research, 53(6), 741-744. DOI: http://dx.doi.org/10.18805/IJARe.%20A-411.

(XXV) Raza, M.A., Feng, L.Y., van Der Werf, W., Iqbal, N., Khalid, M.H.B. Chen, Y.K., Wasaya, A., Ahmed, S., Ud Din., A.M., Khan, A., Ahmed, S., Yang, F., Yang, W., 2019. Maize leaf-removal: A new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system. Scientific Reports, 9(1), e13453. DOI: https://doi.org/10.1038/s41598-019-49858-8.

(XXVI) Shafiq, I., Hussain, S., Raza, M.A., Iqbal, N., Asghar, M.A., Raza, A., Fan, Y., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W., Yang F., 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20(1), 4-23. DOI: https://doi.org/10.1016/S2095-3119(20)63227-0.

(XXVII) Sifuentes-Pallaoro, D., Aquino-Arantes, C.R.D., Ribeiro-Correa, A., Clarete-Camili, E., Barbosa-Coelho, M.D.F., 2020. Effects of humus and shading levels in the production of Lactuca canadensis L. seedlings. Acta Agronómica, 69(1), 32-37. DOI: https://doi.org/10.15446/acag.v68n4.72550.

(XXVIII) Song, Y., Teng, G., Yuan, Y., Liu, T., Sun, Z., 2021. Assessment of wheat chlorophyll content by the multiple linear regression of leaf image features. Information processing in Agriculture, 8(2), 232-243. DOI: https://doi.org/10.1016/j.inpa.2020.05.002.

(XXIX) Tang, W., Guo, H., Baskin, C.C., Xiong, W., Yang, C., Li, Z., Song, H., Wang, T., Yin, J., Wu, X., Miao, F., Zhong, S., Tap, Q., Zhao, Y., Sun J., 2022. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. Plants, 11(13), e1688. DOI: https://doi.org/10.3390/plants11131688.

(XXX) Wan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H., Liu, Y., 2020. Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 8, e9316. DOI: https://doi.org/10.7717/peerj.9316.

(XXXI) Wang, J., Shi, K., Lu, W., Lu, D., 2020a. Post-silking shading stress affects leaf nitrogen metabolism of spring maize in southern China. Plants, 9(2), e210. DOI: https://doi.org/10.3390/plants9020210.

(XXXII) Wang, N., Zhao, M., Li, Q., Liu, X., Song, H., Peng, X., Wang, H., Yang, N., Fan, P., Wang, R., Du, R., 2020b. Effects of defoliation modalities on plant growth, leaf traits, and carbohydrate allocation in Amorpha fruticosa L. and Robinia pseudoacacia L. seedlings. Annals of Forest Science, 77(53), 1-15. DOI: https://doi.org/10.1007/s13595-020-00953-1.

(XXXIII) Xu, M.Y., Wu, K.X., Liu, Y., Liu, J., Tang, Z.H., 2020b. Effects of light intensity on the growth, photosynthetic characteristics, and secondary metabolites of Eleutherococcus senticosus Harms. Photosynthetica, 58(3), 881-889. DOI: https://doi.org/10.32615/ps.2020.045.

(XXXIV) Xu, Y., Liu, X., Shi, Q., Cheng, F., Zhang, L., Shao, C., Gong, B., 2020a. Pruning length of lateral branches affects tomato growth and yields in relation to auxin-cytokinin crosstalt. Plant Growth Regulation, 92(1), 1-13. DOI: https://doi.org/10.1007/s10725-020-00615-2.

(XXXV) Yamashita, H., Tanaka, Y., Umetsu, K., Morita, S., Ono, Y., Suzuki, T., Takemoto, T., Morita, A., Ikka, T., 2020. Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation. Frontiers in Plant Science, 11, e556476. DOI: https://doi.org/10.3389/fpls.2020.556476.

(XXXVI) Yu, M., Ding, G., Gao, G., Liu, Z., Wang, C., 2020. Double effects of age and environment on resource allocation trade-offs of Salix psammophila in different microtopographic habitats of a sand dune. Journal of plant growth regulation, 39(2), 544-552. DOI: https://doi.org/10.1007/s00344-019-09998-7.

Downloads

Publicado

2024-06-12

Como Citar

Muda, S., Lakitan, B., Wijaya, A., Susilawati, S., Zaidan, Z., & Yakup, Y. (2024). Crescimento e rendimento do espinafre brasileiro sob diferentes intensidades de sombreamento e períodos de colheita em um ecossistema urbano de planície tropical. Revista De Agricultura Neotropical, 11(2), e8464. https://doi.org/10.32404/rean.v11i2.8464